Extensions 1→N→G→Q→1 with N=C3 and Q=D45D4

Direct product G=N×Q with N=C3 and Q=D45D4
dρLabelID
C3×D45D448C3xD4:5D4192,1435

Semidirect products G=N:Q with N=C3 and Q=D45D4
extensionφ:Q→Aut NdρLabelID
C31(D45D4) = C24.38D6φ: D45D4/C2×C22⋊C4C2 ⊆ Aut C348C3:1(D4:5D4)192,1049
C32(D45D4) = D1223D4φ: D45D4/C4×D4C2 ⊆ Aut C348C3:2(D4:5D4)192,1109
C33(D45D4) = D45D12φ: D45D4/C4×D4C2 ⊆ Aut C348C3:3(D4:5D4)192,1113
C34(D45D4) = C24.44D6φ: D45D4/C22≀C2C2 ⊆ Aut C348C3:4(D4:5D4)192,1150
C35(D45D4) = C6.402+ 1+4φ: D45D4/C4⋊D4C2 ⊆ Aut C348C3:5(D4:5D4)192,1169
C36(D45D4) = D1220D4φ: D45D4/C4⋊D4C2 ⊆ Aut C348C3:6(D4:5D4)192,1171
C37(D45D4) = D1221D4φ: D45D4/C22⋊Q8C2 ⊆ Aut C348C3:7(D4:5D4)192,1189
C38(D45D4) = C6.1212+ 1+4φ: D45D4/C22.D4C2 ⊆ Aut C348C3:8(D4:5D4)192,1213
C39(D45D4) = D1210D4φ: D45D4/C4.4D4C2 ⊆ Aut C348C3:9(D4:5D4)192,1235
C310(D45D4) = C24.53D6φ: D45D4/C22×D4C2 ⊆ Aut C348C3:10(D4:5D4)192,1365
C311(D45D4) = C6.1452+ 1+4φ: D45D4/C2×C4○D4C2 ⊆ Aut C348C3:11(D4:5D4)192,1388


׿
×
𝔽