p-group, metabelian, nilpotent (class 2), monomial
Aliases: D4⋊5D4, C42⋊9C22, C22.40C24, C24.19C22, C23.43C23, C2.132+ 1+4, (C4×D4)⋊15C2, C4⋊C4⋊5C22, C4.36(C2×D4), C22≀C2⋊6C2, C4⋊D4⋊11C2, D4○2(C22⋊C4), (C22×D4)⋊9C2, (C2×D4)⋊6C22, C22⋊Q8⋊11C2, C22.3(C2×D4), C4.4D4⋊10C2, C22⋊2(C4○D4), C22⋊C4⋊7C22, (C2×C4).27C23, (C2×Q8)⋊12C22, C2.18(C22×D4), (C22×C4)⋊11C22, C22.D4⋊8C2, C22⋊C4○(C2×D4), (C2×C4○D4)⋊6C2, C2.20(C2×C4○D4), (C2×C22⋊C4)⋊14C2, SmallGroup(64,227)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4⋊5D4
G = < a,b,c,d | a4=b2=c4=d2=1, bab=a-1, ac=ca, ad=da, cbc-1=dbd=a2b, dcd=c-1 >
Subgroups: 285 in 167 conjugacy classes, 83 normal (31 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C22×D4, C2×C4○D4, D4⋊5D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, D4⋊5D4
Character table of D4⋊5D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ17 | 2 | -2 | -2 | 2 | 2 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | -2 | 2 | 2 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2i | -2i | -2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | -2i | 2i | 2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2i | -2i | 2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ24 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2i | 2i | -2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ25 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 11)(2 10)(3 9)(4 12)(5 13)(6 16)(7 15)(8 14)
(1 8 12 13)(2 5 9 14)(3 6 10 15)(4 7 11 16)
(1 15)(2 16)(3 13)(4 14)(5 11)(6 12)(7 9)(8 10)
G:=sub<Sym(16)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,11)(2,10)(3,9)(4,12)(5,13)(6,16)(7,15)(8,14), (1,8,12,13)(2,5,9,14)(3,6,10,15)(4,7,11,16), (1,15)(2,16)(3,13)(4,14)(5,11)(6,12)(7,9)(8,10)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,11)(2,10)(3,9)(4,12)(5,13)(6,16)(7,15)(8,14), (1,8,12,13)(2,5,9,14)(3,6,10,15)(4,7,11,16), (1,15)(2,16)(3,13)(4,14)(5,11)(6,12)(7,9)(8,10) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,11),(2,10),(3,9),(4,12),(5,13),(6,16),(7,15),(8,14)], [(1,8,12,13),(2,5,9,14),(3,6,10,15),(4,7,11,16)], [(1,15),(2,16),(3,13),(4,14),(5,11),(6,12),(7,9),(8,10)]])
G:=TransitiveGroup(16,115);
D4⋊5D4 is a maximal subgroup of
D4×C4○D4 C22.64C25 C22.73C25 C22.74C25 C22.77C25 C22.78C25 C22.79C25 C22.83C25 C4⋊2+ 1+4 C22.89C25 C22.102C25 C22.110C25 C42⋊C23 C22.122C25 C22.123C25 C22.124C25 C22.134C25 C22.149C25 D4⋊2S4
D4p⋊D4: D8⋊9D4 D8⋊10D4 D8⋊5D4 D8⋊12D4 D12⋊23D4 D12⋊20D4 D12⋊21D4 D12⋊10D4 ...
C2p.2+ 1+4: SD16⋊6D4 SD16⋊7D4 SD16⋊2D4 SD16⋊10D4 C42.461C23 C42.462C23 C42.41C23 C42.46C23 ...
D4⋊5D4 is a maximal quotient of
D4×C22⋊C4 C24.549C23 C23.224C24 C23.231C24 C23.234C24 C23.240C24 C23.241C24 C24.558C23 C24.217C23 C24.218C23 C24.220C23 C23.304C24 C24.244C23 C23.308C24 C24⋊8D4 C23.311C24 C24.249C23 C24.252C23 C23.318C24 C24.563C23 C24.254C23 C23.324C24 C24.258C23 C24.259C23 C23.327C24 C23.328C24 C24.262C23 C24.263C23 C23.335C24 C24⋊4Q8 C24.567C23 C24.267C23 C24.569C23 C23.344C24 C23.345C24 C24.271C23 C23.350C24 C23.351C24 C23.354C24 C23.356C24 C24.278C23 C24.279C23 C23.359C24 C23.360C24 C23.364C24 C24.285C23 C24.286C23 C23.367C24 C23.368C24 C24.289C23 C24.290C23 C23.372C24 C24.572C23 C23.374C24 C24.293C23 C23.377C24 C23.380C24 C24.573C23 C23.388C24 C23.390C24 C23.392C24 C24.311C23 C23.434C24 C42⋊17D4 C23.439C24 C42⋊19D4 C23.443C24 C42⋊21D4 C23.449C24 C42⋊6Q8 C24.326C23 C24.327C23 C23.455C24 C23.456C24 C23.457C24 C23.458C24 C24.331C23 C24.332C23 C23.568C24 C23.570C24 C23.571C24 C23.572C24 C23.573C24 C23.576C24 C23.578C24 C23.581C24 C23.584C24 C23.585C24 C24.393C23 C24.394C23 C24.395C23 C23.589C24 C23.590C24 C23.591C24 C23.592C24 C23.593C24 C24.401C23 C23.595C24 C24.403C23 C23.597C24 C24.405C23 C24.406C23 C23.600C24 C24.407C23 C23.602C24 C23.603C24 C24.408C23 C23.605C24 C23.606C24 C23.607C24 C23.608C24 C24.411C23 C24.412C23 C23.611C24 C23.612C24 C23.613C24 C24.413C23 C23.615C24 C23.616C24
C24.D2p: C24.94D4 C24.95D4 C24.38D6 C24.44D6 C24.53D6 C24.27D10 C24.33D10 C24.42D10 ...
D4⋊D4p: D4⋊4D8 D4⋊5D12 D4⋊5D20 D4⋊5D28 ...
C2p.2+ 1+4: D4⋊7SD16 C42.461C23 C42.462C23 D4⋊8SD16 D4⋊5Q16 C42.465C23 C42.466C23 C42.467C23 ...
Matrix representation of D4⋊5D4 ►in GL4(𝔽5) generated by
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 1 | 3 |
0 | 0 | 1 | 4 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 3 |
0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 |
4 | 0 | 0 | 0 |
0 | 0 | 2 | 1 |
0 | 0 | 2 | 3 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 2 | 1 |
0 | 0 | 2 | 3 |
G:=sub<GL(4,GF(5))| [4,0,0,0,0,4,0,0,0,0,1,1,0,0,3,4],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,3,4],[0,4,0,0,1,0,0,0,0,0,2,2,0,0,1,3],[0,1,0,0,1,0,0,0,0,0,2,2,0,0,1,3] >;
D4⋊5D4 in GAP, Magma, Sage, TeX
D_4\rtimes_5D_4
% in TeX
G:=Group("D4:5D4");
// GroupNames label
G:=SmallGroup(64,227);
// by ID
G=gap.SmallGroup(64,227);
# by ID
G:=PCGroup([6,-2,2,2,2,-2,2,96,217,650,297]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^4=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations
Export