Extensions 1→N→G→Q→1 with N=D12⋊C4 and Q=C2

Direct product G=N×Q with N=D12⋊C4 and Q=C2
dρLabelID
C2×D12⋊C448C2xD12:C4192,697

Semidirect products G=N:Q with N=D12⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
D12⋊C41C2 = M4(2)⋊D6φ: C2/C1C2 ⊆ Out D12⋊C4488-D12:C4:1C2192,305
D12⋊C42C2 = D121D4φ: C2/C1C2 ⊆ Out D12⋊C4248+D12:C4:2C2192,306
D12⋊C43C2 = D12.4D4φ: C2/C1C2 ⊆ Out D12⋊C4488-D12:C4:3C2192,311
D12⋊C44C2 = D12.5D4φ: C2/C1C2 ⊆ Out D12⋊C4488+D12:C4:4C2192,312
D12⋊C45C2 = D1218D4φ: C2/C1C2 ⊆ Out D12⋊C4248+D12:C4:5C2192,757
D12⋊C46C2 = D12.38D4φ: C2/C1C2 ⊆ Out D12⋊C4488-D12:C4:6C2192,760
D12⋊C47C2 = D12.39D4φ: C2/C1C2 ⊆ Out D12⋊C4488+D12:C4:7C2192,761
D12⋊C48C2 = D12.40D4φ: C2/C1C2 ⊆ Out D12⋊C4488-D12:C4:8C2192,764
D12⋊C49C2 = S3×C4≀C2φ: C2/C1C2 ⊆ Out D12⋊C4244D12:C4:9C2192,379
D12⋊C410C2 = C423D6φ: C2/C1C2 ⊆ Out D12⋊C4484D12:C4:10C2192,380
D12⋊C411C2 = D2410C4φ: C2/C1C2 ⊆ Out D12⋊C4484D12:C4:11C2192,453
D12⋊C412C2 = D247C4φ: C2/C1C2 ⊆ Out D12⋊C4484D12:C4:12C2192,454
D12⋊C413C2 = M4(2)⋊24D6φ: C2/C1C2 ⊆ Out D12⋊C4484D12:C4:13C2192,698
D12⋊C414C2 = C24.54D4φ: C2/C1C2 ⊆ Out D12⋊C4484D12:C4:14C2192,704
D12⋊C415C2 = C24.100D4φ: trivial image484D12:C4:15C2192,703


׿
×
𝔽