Extensions 1→N→G→Q→1 with N=D12:C4 and Q=C2

Direct product G=NxQ with N=D12:C4 and Q=C2
dρLabelID
C2xD12:C448C2xD12:C4192,697

Semidirect products G=N:Q with N=D12:C4 and Q=C2
extensionφ:Q→Out NdρLabelID
D12:C4:1C2 = M4(2):D6φ: C2/C1C2 ⊆ Out D12:C4488-D12:C4:1C2192,305
D12:C4:2C2 = D12:1D4φ: C2/C1C2 ⊆ Out D12:C4248+D12:C4:2C2192,306
D12:C4:3C2 = D12.4D4φ: C2/C1C2 ⊆ Out D12:C4488-D12:C4:3C2192,311
D12:C4:4C2 = D12.5D4φ: C2/C1C2 ⊆ Out D12:C4488+D12:C4:4C2192,312
D12:C4:5C2 = D12:18D4φ: C2/C1C2 ⊆ Out D12:C4248+D12:C4:5C2192,757
D12:C4:6C2 = D12.38D4φ: C2/C1C2 ⊆ Out D12:C4488-D12:C4:6C2192,760
D12:C4:7C2 = D12.39D4φ: C2/C1C2 ⊆ Out D12:C4488+D12:C4:7C2192,761
D12:C4:8C2 = D12.40D4φ: C2/C1C2 ⊆ Out D12:C4488-D12:C4:8C2192,764
D12:C4:9C2 = S3xC4wrC2φ: C2/C1C2 ⊆ Out D12:C4244D12:C4:9C2192,379
D12:C4:10C2 = C42:3D6φ: C2/C1C2 ⊆ Out D12:C4484D12:C4:10C2192,380
D12:C4:11C2 = D24:10C4φ: C2/C1C2 ⊆ Out D12:C4484D12:C4:11C2192,453
D12:C4:12C2 = D24:7C4φ: C2/C1C2 ⊆ Out D12:C4484D12:C4:12C2192,454
D12:C4:13C2 = M4(2):24D6φ: C2/C1C2 ⊆ Out D12:C4484D12:C4:13C2192,698
D12:C4:14C2 = C24.54D4φ: C2/C1C2 ⊆ Out D12:C4484D12:C4:14C2192,704
D12:C4:15C2 = C24.100D4φ: trivial image484D12:C4:15C2192,703


׿
x
:
Z
F
o
wr
Q
<