Copied to
clipboard

G = M4(2)⋊D6order 192 = 26·3

1st semidirect product of M4(2) and D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12.1D4, M4(2)⋊1D6, Dic6.1D4, C23.6D12, C4.78(S3×D4), (C2×D4).13D6, C12.91(C2×D4), C4.D41S3, C8.D65C2, D12⋊C41C2, C6.15C22≀C2, D46D6.2C2, C31(D4.9D4), (C2×C12).3C23, (C22×C6).19D4, C23.12D61C2, C4○D12.1C22, (C4×Dic3)⋊1C22, (C6×D4).13C22, C22.10(C2×D12), C2.18(D6⋊D4), (C2×Dic6)⋊12C22, (C3×M4(2))⋊8C22, (C2×C6).20(C2×D4), (C3×C4.D4)⋊3C2, (C2×C4).3(C22×S3), SmallGroup(192,305)

Series: Derived Chief Lower central Upper central

C1C2×C12 — M4(2)⋊D6
C1C3C6C12C2×C12C4○D12D46D6 — M4(2)⋊D6
C3C6C2×C12 — M4(2)⋊D6
C1C2C2×C4C4.D4

Generators and relations for M4(2)⋊D6
 G = < a,b,c,d | a8=b2=c6=d2=1, bab=a5, cac-1=ab, dad=a-1b, bc=cb, dbd=a4b, dcd=c-1 >

Subgroups: 528 in 152 conjugacy classes, 39 normal (17 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, C12, D6, C2×C6, C2×C6, C42, C22⋊C4, M4(2), SD16, Q16, C2×D4, C2×D4, C2×Q8, C4○D4, C24, Dic6, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, C4.D4, C4≀C2, C4.4D4, C8.C22, 2+ 1+4, C24⋊C2, Dic12, C4×Dic3, C6.D4, C3×M4(2), C2×Dic6, C4○D12, S3×D4, D42S3, C2×C3⋊D4, C6×D4, D4.9D4, D12⋊C4, C3×C4.D4, C8.D6, C23.12D6, D46D6, M4(2)⋊D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D12, C22×S3, C22≀C2, C2×D12, S3×D4, D4.9D4, D6⋊D4, M4(2)⋊D6

Character table of M4(2)⋊D6

 class 12A2B2C2D2E2F34A4B4C4D4E4F4G6A6B6C6D8A8B12A12B24A24B24C24D
 size 1124412122221212121224248888448888
ρ1111111111111111111111111111    trivial
ρ21111111111-111-1-11111-1-111-1-1-1-1    linear of order 2
ρ3111-1-11-1111-1-11-1111-1-11-111-11-11    linear of order 2
ρ4111-1-11-11111-111-111-1-1-11111-11-1    linear of order 2
ρ511111-1-1111-1-1-1-1-1111111111111    linear of order 2
ρ611111-1-11111-1-1111111-1-111-1-1-1-1    linear of order 2
ρ7111-1-1-1111111-11-111-1-11-111-11-11    linear of order 2
ρ8111-1-1-11111-11-1-1111-1-1-11111-11-1    linear of order 2
ρ922-200-202-22002002-200002-20000    orthogonal lifted from D4
ρ1022-2000222-20-20002-20000-220000    orthogonal lifted from D4
ρ112222200-12200000-1-1-1-1-2-2-1-11111    orthogonal lifted from D6
ρ12222-2-200-12200000-1-111-22-1-1-11-11    orthogonal lifted from D6
ρ1322-2000-222-2020002-20000-220000    orthogonal lifted from D4
ρ1422-200202-2200-2002-200002-20000    orthogonal lifted from D4
ρ152222200-12200000-1-1-1-122-1-1-1-1-1-1    orthogonal lifted from S3
ρ16222-2-200-12200000-1-1112-2-1-11-11-1    orthogonal lifted from D6
ρ172222-2002-2-20000022-2200-2-20000    orthogonal lifted from D4
ρ18222-22002-2-200000222-200-2-20000    orthogonal lifted from D4
ρ192222-200-1-2-200000-1-11-10011-333-3    orthogonal lifted from D12
ρ20222-2200-1-2-200000-1-1-110011-3-333    orthogonal lifted from D12
ρ21222-2200-1-2-200000-1-1-11001133-3-3    orthogonal lifted from D12
ρ222222-200-1-2-200000-1-11-100113-3-33    orthogonal lifted from D12
ρ2344-40000-2-4400000-220000-220000    orthogonal lifted from S3×D4
ρ2444-40000-24-400000-2200002-20000    orthogonal lifted from S3×D4
ρ254-4000004002i00-2i0-400000000000    complex lifted from D4.9D4
ρ264-400000400-2i002i0-400000000000    complex lifted from D4.9D4
ρ278-800000-40000000400000000000    symplectic faithful, Schur index 2

Smallest permutation representation of M4(2)⋊D6
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 11)(2 16)(3 13)(4 10)(5 15)(6 12)(7 9)(8 14)(17 28)(18 25)(19 30)(20 27)(21 32)(22 29)(23 26)(24 31)(33 47)(34 44)(35 41)(36 46)(37 43)(38 48)(39 45)(40 42)
(1 23 46 13 32 38)(2 31 47 8 25 45)(3 21 48 11 26 36)(4 29 41 6 27 43)(5 19 42 9 28 34)(7 17 44 15 30 40)(10 22 35 12 20 37)(14 18 39 16 24 33)
(1 38)(2 43)(3 40)(4 45)(5 34)(6 47)(7 36)(8 41)(9 42)(10 35)(11 44)(12 37)(13 46)(14 39)(15 48)(16 33)(17 26)(19 28)(21 30)(23 32)(25 29)(27 31)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,11)(2,16)(3,13)(4,10)(5,15)(6,12)(7,9)(8,14)(17,28)(18,25)(19,30)(20,27)(21,32)(22,29)(23,26)(24,31)(33,47)(34,44)(35,41)(36,46)(37,43)(38,48)(39,45)(40,42), (1,23,46,13,32,38)(2,31,47,8,25,45)(3,21,48,11,26,36)(4,29,41,6,27,43)(5,19,42,9,28,34)(7,17,44,15,30,40)(10,22,35,12,20,37)(14,18,39,16,24,33), (1,38)(2,43)(3,40)(4,45)(5,34)(6,47)(7,36)(8,41)(9,42)(10,35)(11,44)(12,37)(13,46)(14,39)(15,48)(16,33)(17,26)(19,28)(21,30)(23,32)(25,29)(27,31)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,11)(2,16)(3,13)(4,10)(5,15)(6,12)(7,9)(8,14)(17,28)(18,25)(19,30)(20,27)(21,32)(22,29)(23,26)(24,31)(33,47)(34,44)(35,41)(36,46)(37,43)(38,48)(39,45)(40,42), (1,23,46,13,32,38)(2,31,47,8,25,45)(3,21,48,11,26,36)(4,29,41,6,27,43)(5,19,42,9,28,34)(7,17,44,15,30,40)(10,22,35,12,20,37)(14,18,39,16,24,33), (1,38)(2,43)(3,40)(4,45)(5,34)(6,47)(7,36)(8,41)(9,42)(10,35)(11,44)(12,37)(13,46)(14,39)(15,48)(16,33)(17,26)(19,28)(21,30)(23,32)(25,29)(27,31) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,11),(2,16),(3,13),(4,10),(5,15),(6,12),(7,9),(8,14),(17,28),(18,25),(19,30),(20,27),(21,32),(22,29),(23,26),(24,31),(33,47),(34,44),(35,41),(36,46),(37,43),(38,48),(39,45),(40,42)], [(1,23,46,13,32,38),(2,31,47,8,25,45),(3,21,48,11,26,36),(4,29,41,6,27,43),(5,19,42,9,28,34),(7,17,44,15,30,40),(10,22,35,12,20,37),(14,18,39,16,24,33)], [(1,38),(2,43),(3,40),(4,45),(5,34),(6,47),(7,36),(8,41),(9,42),(10,35),(11,44),(12,37),(13,46),(14,39),(15,48),(16,33),(17,26),(19,28),(21,30),(23,32),(25,29),(27,31)]])

Matrix representation of M4(2)⋊D6 in GL8(𝔽73)

59023230000
05927230000
6761400000
61670140000
0000046649
0000270649
0000469460
0000469027
,
720000000
072000000
007200000
000720000
00000100
00001000
00000001
00000010
,
11000000
720000000
59660720000
66591720000
00000100
00001000
000003072
000030720
,
11000000
072000000
66591720000
59660720000
0000072025
000010480
000007001
000030720

G:=sub<GL(8,GF(73))| [59,0,67,61,0,0,0,0,0,59,6,67,0,0,0,0,23,27,14,0,0,0,0,0,23,23,0,14,0,0,0,0,0,0,0,0,0,27,4,4,0,0,0,0,46,0,69,69,0,0,0,0,64,64,46,0,0,0,0,0,9,9,0,27],[72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[1,72,59,66,0,0,0,0,1,0,66,59,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,1,0,3,0,0,0,0,1,0,3,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0],[1,0,66,59,0,0,0,0,1,72,59,66,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,1,0,3,0,0,0,0,72,0,70,0,0,0,0,0,0,48,0,72,0,0,0,0,25,0,1,0] >;

M4(2)⋊D6 in GAP, Magma, Sage, TeX

M_4(2)\rtimes D_6
% in TeX

G:=Group("M4(2):D6");
// GroupNames label

G:=SmallGroup(192,305);
// by ID

G=gap.SmallGroup(192,305);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,254,219,58,1123,570,136,1684,438,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^6=d^2=1,b*a*b=a^5,c*a*c^-1=a*b,d*a*d=a^-1*b,b*c=c*b,d*b*d=a^4*b,d*c*d=c^-1>;
// generators/relations

Export

Character table of M4(2)⋊D6 in TeX

׿
×
𝔽