Extensions 1→N→G→Q→1 with N=C2 and Q=D4⋊Dic3

Direct product G=N×Q with N=C2 and Q=D4⋊Dic3
dρLabelID
C2×D4⋊Dic396C2xD4:Dic3192,773


Non-split extensions G=N.Q with N=C2 and Q=D4⋊Dic3
extensionφ:Q→Aut NdρLabelID
C2.1(D4⋊Dic3) = C12.C42central extension (φ=1)192C2.1(D4:Dic3)192,88
C2.2(D4⋊Dic3) = C12.57D8central extension (φ=1)96C2.2(D4:Dic3)192,93
C2.3(D4⋊Dic3) = (C6×D4)⋊C4central stem extension (φ=1)48C2.3(D4:Dic3)192,96
C2.4(D4⋊Dic3) = C12.9D8central stem extension (φ=1)96C2.4(D4:Dic3)192,103
C2.5(D4⋊Dic3) = C12.10D8central stem extension (φ=1)192C2.5(D4:Dic3)192,106
C2.6(D4⋊Dic3) = D81Dic3central stem extension (φ=1)96C2.6(D4:Dic3)192,121
C2.7(D4⋊Dic3) = D8.Dic3central stem extension (φ=1)484C2.7(D4:Dic3)192,122
C2.8(D4⋊Dic3) = C6.5Q32central stem extension (φ=1)192C2.8(D4:Dic3)192,123
C2.9(D4⋊Dic3) = Q16.Dic3central stem extension (φ=1)964C2.9(D4:Dic3)192,124
C2.10(D4⋊Dic3) = D82Dic3central stem extension (φ=1)484C2.10(D4:Dic3)192,125
C2.11(D4⋊Dic3) = C24.41D4central stem extension (φ=1)964C2.11(D4:Dic3)192,126

׿
×
𝔽