Copied to
clipboard

G = D82Dic3order 192 = 26·3

2nd semidirect product of D8 and Dic3 acting via Dic3/C6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D82Dic3, C24.40D4, Q162Dic3, C12.37SD16, (C3×D8)⋊4C4, (C2×C6).4D8, (C3×Q16)⋊4C4, C4○D8.2S3, (C2×C8).51D6, C33(D82C4), C24.27(C2×C4), C8⋊Dic323C2, C12.C88C2, C8.3(C2×Dic3), (C2×C12).118D4, C8.30(C3⋊D4), C4.12(D4.S3), C22.3(D4⋊S3), C6.30(D4⋊C4), C12.17(C22⋊C4), (C2×C24).154C22, C4.5(C6.D4), C2.10(D4⋊Dic3), (C3×C4○D8).5C2, (C2×C4).26(C3⋊D4), SmallGroup(192,125)

Series: Derived Chief Lower central Upper central

C1C24 — D82Dic3
C1C3C6C12C2×C12C2×C24C8⋊Dic3 — D82Dic3
C3C6C12C24 — D82Dic3
C1C2C2×C4C2×C8C4○D8

Generators and relations for D82Dic3
 G = < a,b,c,d | a8=b2=c6=1, d2=c3, bab=a-1, ac=ca, dad-1=a3, cbc-1=a4b, dbd-1=a5b, dcd-1=c-1 >

Subgroups: 168 in 58 conjugacy classes, 27 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, Q8, Dic3, C12, C12, C2×C6, C2×C6, C16, C4⋊C4, C2×C8, D8, SD16, Q16, C4○D4, C24, C2×Dic3, C2×C12, C2×C12, C3×D4, C3×Q8, C4.Q8, M5(2), C4○D8, C3⋊C16, C4⋊Dic3, C2×C24, C3×D8, C3×SD16, C3×Q16, C3×C4○D4, D82C4, C12.C8, C8⋊Dic3, C3×C4○D8, D82Dic3
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Dic3, D6, C22⋊C4, D8, SD16, C2×Dic3, C3⋊D4, D4⋊C4, D4⋊S3, D4.S3, C6.D4, D82C4, D4⋊Dic3, D82Dic3

Character table of D82Dic3

 class 12A2B2C34A4B4C4D4E6A6B6C6D8A8B8C12A12B12C12D12E16A16B16C16D24A24B24C24D
 size 112822282424248822422488121212124444
ρ1111111111111111111111111111111    trivial
ρ211111111-1-1111111111111-1-1-1-11111    linear of order 2
ρ3111-1111-11111-1-1111111-1-1-1-1-1-11111    linear of order 2
ρ4111-1111-1-1-111-1-1111111-1-111111111    linear of order 2
ρ511-1-11-111-ii1-1-1-1-1-11-1-1111i-ii-i1-11-1    linear of order 4
ρ611-1-11-111i-i1-1-1-1-1-11-1-1111-ii-ii1-11-1    linear of order 4
ρ711-111-11-1-ii1-111-1-11-1-11-1-1-ii-ii1-11-1    linear of order 4
ρ811-111-11-1i-i1-111-1-11-1-11-1-1i-ii-i1-11-1    linear of order 4
ρ9222-2-122-200-1-111222-1-1-1110000-1-1-1-1    orthogonal lifted from D6
ρ1022-202-220002-20022-2-2-22000000-22-22    orthogonal lifted from D4
ρ1122202220002200-2-2-2222000000-2-2-2-2    orthogonal lifted from D4
ρ122222-122200-1-1-1-1222-1-1-1-1-10000-1-1-1-1    orthogonal lifted from S3
ρ1322202-2-20002200000-2-2-200-2-2220000    orthogonal lifted from D8
ρ1422202-2-20002200000-2-2-20022-2-20000    orthogonal lifted from D8
ρ1522-2-2-1-22200-1111-2-2211-1-1-10000-11-11    symplectic lifted from Dic3, Schur index 2
ρ1622-22-1-22-200-11-1-1-2-2211-1110000-11-11    symplectic lifted from Dic3, Schur index 2
ρ1722-20-1-22000-11-3--322-211-1--3-300001-11-1    complex lifted from C3⋊D4
ρ1822-20-1-22000-11--3-322-211-1-3--300001-11-1    complex lifted from C3⋊D4
ρ1922-2022-20002-20000022-200--2-2-2--20000    complex lifted from SD16
ρ2022-2022-20002-20000022-200-2--2--2-20000    complex lifted from SD16
ρ212220-122000-1-1-3--3-2-2-2-1-1-1-3--300001111    complex lifted from C3⋊D4
ρ222220-122000-1-1--3-3-2-2-2-1-1-1--3-300001111    complex lifted from C3⋊D4
ρ234440-2-4-4000-2-2000002220000000000    orthogonal lifted from D4⋊S3, Schur index 2
ρ2444-40-24-4000-2200000-2-220000000000    symplectic lifted from D4.S3, Schur index 2
ρ254-400400000-40002-2-2-200000000000-2-202-2    complex lifted from D82C4
ρ264-400400000-4000-2-22-2000000000002-20-2-2    complex lifted from D82C4
ρ274-400-2000002000-2-22-20-23230000000--6--2-6-2    complex faithful
ρ284-400-20000020002-2-2-20-23230000000-6-2--6--2    complex faithful
ρ294-400-20000020002-2-2-2023-230000000--6-2-6--2    complex faithful
ρ304-400-2000002000-2-22-2023-230000000-6--2--6-2    complex faithful

Smallest permutation representation of D82Dic3
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 12)(2 11)(3 10)(4 9)(5 16)(6 15)(7 14)(8 13)(17 31)(18 30)(19 29)(20 28)(21 27)(22 26)(23 25)(24 32)(33 46)(34 45)(35 44)(36 43)(37 42)(38 41)(39 48)(40 47)
(1 26 34)(2 27 35)(3 28 36)(4 29 37)(5 30 38)(6 31 39)(7 32 40)(8 25 33)(9 23 42 13 19 46)(10 24 43 14 20 47)(11 17 44 15 21 48)(12 18 45 16 22 41)
(2 4)(3 7)(6 8)(9 10 13 14)(11 16 15 12)(17 45 21 41)(18 48 22 44)(19 43 23 47)(20 46 24 42)(25 39)(26 34)(27 37)(28 40)(29 35)(30 38)(31 33)(32 36)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,12)(2,11)(3,10)(4,9)(5,16)(6,15)(7,14)(8,13)(17,31)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)(24,32)(33,46)(34,45)(35,44)(36,43)(37,42)(38,41)(39,48)(40,47), (1,26,34)(2,27,35)(3,28,36)(4,29,37)(5,30,38)(6,31,39)(7,32,40)(8,25,33)(9,23,42,13,19,46)(10,24,43,14,20,47)(11,17,44,15,21,48)(12,18,45,16,22,41), (2,4)(3,7)(6,8)(9,10,13,14)(11,16,15,12)(17,45,21,41)(18,48,22,44)(19,43,23,47)(20,46,24,42)(25,39)(26,34)(27,37)(28,40)(29,35)(30,38)(31,33)(32,36)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,12)(2,11)(3,10)(4,9)(5,16)(6,15)(7,14)(8,13)(17,31)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)(24,32)(33,46)(34,45)(35,44)(36,43)(37,42)(38,41)(39,48)(40,47), (1,26,34)(2,27,35)(3,28,36)(4,29,37)(5,30,38)(6,31,39)(7,32,40)(8,25,33)(9,23,42,13,19,46)(10,24,43,14,20,47)(11,17,44,15,21,48)(12,18,45,16,22,41), (2,4)(3,7)(6,8)(9,10,13,14)(11,16,15,12)(17,45,21,41)(18,48,22,44)(19,43,23,47)(20,46,24,42)(25,39)(26,34)(27,37)(28,40)(29,35)(30,38)(31,33)(32,36) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,12),(2,11),(3,10),(4,9),(5,16),(6,15),(7,14),(8,13),(17,31),(18,30),(19,29),(20,28),(21,27),(22,26),(23,25),(24,32),(33,46),(34,45),(35,44),(36,43),(37,42),(38,41),(39,48),(40,47)], [(1,26,34),(2,27,35),(3,28,36),(4,29,37),(5,30,38),(6,31,39),(7,32,40),(8,25,33),(9,23,42,13,19,46),(10,24,43,14,20,47),(11,17,44,15,21,48),(12,18,45,16,22,41)], [(2,4),(3,7),(6,8),(9,10,13,14),(11,16,15,12),(17,45,21,41),(18,48,22,44),(19,43,23,47),(20,46,24,42),(25,39),(26,34),(27,37),(28,40),(29,35),(30,38),(31,33),(32,36)]])

Matrix representation of D82Dic3 in GL4(𝔽97) generated by

618900
85300
73513689
3394844
,
57436952
83491769
89783256
53703256
,
96100
96000
2212096
177811
,
0100
1000
5314448
79206153
G:=sub<GL(4,GF(97))| [61,8,73,33,89,53,51,94,0,0,36,8,0,0,89,44],[57,83,89,53,43,49,78,70,69,17,32,32,52,69,56,56],[96,96,22,17,1,0,12,78,0,0,0,1,0,0,96,1],[0,1,53,79,1,0,14,20,0,0,44,61,0,0,8,53] >;

D82Dic3 in GAP, Magma, Sage, TeX

D_8\rtimes_2{\rm Dic}_3
% in TeX

G:=Group("D8:2Dic3");
// GroupNames label

G:=SmallGroup(192,125);
// by ID

G=gap.SmallGroup(192,125);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,28,141,387,675,794,80,1684,851,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^6=1,d^2=c^3,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^3,c*b*c^-1=a^4*b,d*b*d^-1=a^5*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Character table of D82Dic3 in TeX

׿
×
𝔽