Extensions 1→N→G→Q→1 with N=C2xD8 and Q=C6

Direct product G=NxQ with N=C2xD8 and Q=C6
dρLabelID
C2xC6xD896C2xC6xD8192,1458

Semidirect products G=N:Q with N=C2xD8 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2xD8):1C6 = C3xC22:D8φ: C6/C3C2 ⊆ Out C2xD848(C2xD8):1C6192,880
(C2xD8):2C6 = C3xD4:D4φ: C6/C3C2 ⊆ Out C2xD896(C2xD8):2C6192,882
(C2xD8):3C6 = C3xC4:D8φ: C6/C3C2 ⊆ Out C2xD896(C2xD8):3C6192,892
(C2xD8):4C6 = C3xC8:7D4φ: C6/C3C2 ⊆ Out C2xD896(C2xD8):4C6192,899
(C2xD8):5C6 = C3xC8:4D4φ: C6/C3C2 ⊆ Out C2xD896(C2xD8):5C6192,926
(C2xD8):6C6 = C6xD16φ: C6/C3C2 ⊆ Out C2xD896(C2xD8):6C6192,938
(C2xD8):7C6 = C3xC8:2D4φ: C6/C3C2 ⊆ Out C2xD896(C2xD8):7C6192,902
(C2xD8):8C6 = C3xD4.4D4φ: C6/C3C2 ⊆ Out C2xD8484(C2xD8):8C6192,905
(C2xD8):9C6 = C3xC8:3D4φ: C6/C3C2 ⊆ Out C2xD896(C2xD8):9C6192,929
(C2xD8):10C6 = C3xC16:C22φ: C6/C3C2 ⊆ Out C2xD8484(C2xD8):10C6192,942
(C2xD8):11C6 = C6xC8:C22φ: C6/C3C2 ⊆ Out C2xD848(C2xD8):11C6192,1462
(C2xD8):12C6 = C3xD4oD8φ: C6/C3C2 ⊆ Out C2xD8484(C2xD8):12C6192,1465
(C2xD8):13C6 = C6xC4oD8φ: trivial image96(C2xD8):13C6192,1461

Non-split extensions G=N.Q with N=C2xD8 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2xD8).1C6 = C3xC2.D16φ: C6/C3C2 ⊆ Out C2xD896(C2xD8).1C6192,163
(C2xD8).2C6 = C3xD4.2D4φ: C6/C3C2 ⊆ Out C2xD896(C2xD8).2C6192,896
(C2xD8).3C6 = C3xC8.12D4φ: C6/C3C2 ⊆ Out C2xD896(C2xD8).3C6192,928
(C2xD8).4C6 = C6xSD32φ: C6/C3C2 ⊆ Out C2xD896(C2xD8).4C6192,939
(C2xD8).5C6 = C3xM5(2):C2φ: C6/C3C2 ⊆ Out C2xD8484(C2xD8).5C6192,167
(C2xD8).6C6 = C3xD8:C4φ: C6/C3C2 ⊆ Out C2xD896(C2xD8).6C6192,875
(C2xD8).7C6 = C12xD8φ: trivial image96(C2xD8).7C6192,870

׿
x
:
Z
F
o
wr
Q
<