Copied to
clipboard

G = C3×C82D4order 192 = 26·3

Direct product of C3 and C82D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3×C82D4, C2417D4, C82(C3×D4), (C2×D8)⋊7C6, C4.Q84C6, (C6×D8)⋊21C2, C4⋊D44C6, C4.61(C6×D4), D4⋊C418C6, (C2×C12).328D4, C12.468(C2×D4), (C6×M4(2))⋊7C2, (C2×M4(2))⋊2C6, (C22×C6).34D4, C22.93(C6×D4), C23.16(C3×D4), C12.266(C4○D4), C6.152(C4⋊D4), C6.138(C8⋊C22), (C2×C12).928C23, (C2×C24).333C22, (C6×D4).192C22, (C22×C12).426C22, C4⋊C4.9(C2×C6), (C2×C8).22(C2×C6), (C3×C4.Q8)⋊13C2, C4.11(C3×C4○D4), (C2×C4).33(C3×D4), (C3×C4⋊D4)⋊31C2, (C2×D4).15(C2×C6), (C2×C6).649(C2×D4), C2.21(C3×C4⋊D4), C2.13(C3×C8⋊C22), (C3×D4⋊C4)⋊41C2, (C22×C4).49(C2×C6), (C3×C4⋊C4).231C22, (C2×C4).103(C22×C6), SmallGroup(192,902)

Series: Derived Chief Lower central Upper central

C1C2×C4 — C3×C82D4
C1C2C22C2×C4C2×C12C6×D4C6×D8 — C3×C82D4
C1C2C2×C4 — C3×C82D4
C1C2×C6C22×C12 — C3×C82D4

Generators and relations for C3×C82D4
 G = < a,b,c,d | a3=b8=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=b3, dbd=b-1, dcd=c-1 >

Subgroups: 282 in 130 conjugacy classes, 54 normal (30 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C6, C6, C6, C8, C8, C2×C4, C2×C4, D4, C23, C23, C12, C12, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C2×C8, M4(2), D8, C22×C4, C2×D4, C2×D4, C24, C24, C2×C12, C2×C12, C3×D4, C22×C6, C22×C6, D4⋊C4, C4.Q8, C4⋊D4, C2×M4(2), C2×D8, C3×C22⋊C4, C3×C4⋊C4, C2×C24, C3×M4(2), C3×D8, C22×C12, C6×D4, C6×D4, C82D4, C3×D4⋊C4, C3×C4.Q8, C3×C4⋊D4, C6×M4(2), C6×D8, C3×C82D4
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, C2×D4, C4○D4, C3×D4, C22×C6, C4⋊D4, C8⋊C22, C6×D4, C3×C4○D4, C82D4, C3×C4⋊D4, C3×C8⋊C22, C3×C82D4

Smallest permutation representation of C3×C82D4
On 96 points
Generators in S96
(1 65 17)(2 66 18)(3 67 19)(4 68 20)(5 69 21)(6 70 22)(7 71 23)(8 72 24)(9 30 58)(10 31 59)(11 32 60)(12 25 61)(13 26 62)(14 27 63)(15 28 64)(16 29 57)(33 73 81)(34 74 82)(35 75 83)(36 76 84)(37 77 85)(38 78 86)(39 79 87)(40 80 88)(41 54 89)(42 55 90)(43 56 91)(44 49 92)(45 50 93)(46 51 94)(47 52 95)(48 53 96)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 25 75 43)(2 28 76 46)(3 31 77 41)(4 26 78 44)(5 29 79 47)(6 32 80 42)(7 27 73 45)(8 30 74 48)(9 34 96 24)(10 37 89 19)(11 40 90 22)(12 35 91 17)(13 38 92 20)(14 33 93 23)(15 36 94 18)(16 39 95 21)(49 68 62 86)(50 71 63 81)(51 66 64 84)(52 69 57 87)(53 72 58 82)(54 67 59 85)(55 70 60 88)(56 65 61 83)
(2 8)(3 7)(4 6)(9 94)(10 93)(11 92)(12 91)(13 90)(14 89)(15 96)(16 95)(18 24)(19 23)(20 22)(25 43)(26 42)(27 41)(28 48)(29 47)(30 46)(31 45)(32 44)(33 37)(34 36)(38 40)(49 60)(50 59)(51 58)(52 57)(53 64)(54 63)(55 62)(56 61)(66 72)(67 71)(68 70)(73 77)(74 76)(78 80)(81 85)(82 84)(86 88)

G:=sub<Sym(96)| (1,65,17)(2,66,18)(3,67,19)(4,68,20)(5,69,21)(6,70,22)(7,71,23)(8,72,24)(9,30,58)(10,31,59)(11,32,60)(12,25,61)(13,26,62)(14,27,63)(15,28,64)(16,29,57)(33,73,81)(34,74,82)(35,75,83)(36,76,84)(37,77,85)(38,78,86)(39,79,87)(40,80,88)(41,54,89)(42,55,90)(43,56,91)(44,49,92)(45,50,93)(46,51,94)(47,52,95)(48,53,96), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,25,75,43)(2,28,76,46)(3,31,77,41)(4,26,78,44)(5,29,79,47)(6,32,80,42)(7,27,73,45)(8,30,74,48)(9,34,96,24)(10,37,89,19)(11,40,90,22)(12,35,91,17)(13,38,92,20)(14,33,93,23)(15,36,94,18)(16,39,95,21)(49,68,62,86)(50,71,63,81)(51,66,64,84)(52,69,57,87)(53,72,58,82)(54,67,59,85)(55,70,60,88)(56,65,61,83), (2,8)(3,7)(4,6)(9,94)(10,93)(11,92)(12,91)(13,90)(14,89)(15,96)(16,95)(18,24)(19,23)(20,22)(25,43)(26,42)(27,41)(28,48)(29,47)(30,46)(31,45)(32,44)(33,37)(34,36)(38,40)(49,60)(50,59)(51,58)(52,57)(53,64)(54,63)(55,62)(56,61)(66,72)(67,71)(68,70)(73,77)(74,76)(78,80)(81,85)(82,84)(86,88)>;

G:=Group( (1,65,17)(2,66,18)(3,67,19)(4,68,20)(5,69,21)(6,70,22)(7,71,23)(8,72,24)(9,30,58)(10,31,59)(11,32,60)(12,25,61)(13,26,62)(14,27,63)(15,28,64)(16,29,57)(33,73,81)(34,74,82)(35,75,83)(36,76,84)(37,77,85)(38,78,86)(39,79,87)(40,80,88)(41,54,89)(42,55,90)(43,56,91)(44,49,92)(45,50,93)(46,51,94)(47,52,95)(48,53,96), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,25,75,43)(2,28,76,46)(3,31,77,41)(4,26,78,44)(5,29,79,47)(6,32,80,42)(7,27,73,45)(8,30,74,48)(9,34,96,24)(10,37,89,19)(11,40,90,22)(12,35,91,17)(13,38,92,20)(14,33,93,23)(15,36,94,18)(16,39,95,21)(49,68,62,86)(50,71,63,81)(51,66,64,84)(52,69,57,87)(53,72,58,82)(54,67,59,85)(55,70,60,88)(56,65,61,83), (2,8)(3,7)(4,6)(9,94)(10,93)(11,92)(12,91)(13,90)(14,89)(15,96)(16,95)(18,24)(19,23)(20,22)(25,43)(26,42)(27,41)(28,48)(29,47)(30,46)(31,45)(32,44)(33,37)(34,36)(38,40)(49,60)(50,59)(51,58)(52,57)(53,64)(54,63)(55,62)(56,61)(66,72)(67,71)(68,70)(73,77)(74,76)(78,80)(81,85)(82,84)(86,88) );

G=PermutationGroup([[(1,65,17),(2,66,18),(3,67,19),(4,68,20),(5,69,21),(6,70,22),(7,71,23),(8,72,24),(9,30,58),(10,31,59),(11,32,60),(12,25,61),(13,26,62),(14,27,63),(15,28,64),(16,29,57),(33,73,81),(34,74,82),(35,75,83),(36,76,84),(37,77,85),(38,78,86),(39,79,87),(40,80,88),(41,54,89),(42,55,90),(43,56,91),(44,49,92),(45,50,93),(46,51,94),(47,52,95),(48,53,96)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,25,75,43),(2,28,76,46),(3,31,77,41),(4,26,78,44),(5,29,79,47),(6,32,80,42),(7,27,73,45),(8,30,74,48),(9,34,96,24),(10,37,89,19),(11,40,90,22),(12,35,91,17),(13,38,92,20),(14,33,93,23),(15,36,94,18),(16,39,95,21),(49,68,62,86),(50,71,63,81),(51,66,64,84),(52,69,57,87),(53,72,58,82),(54,67,59,85),(55,70,60,88),(56,65,61,83)], [(2,8),(3,7),(4,6),(9,94),(10,93),(11,92),(12,91),(13,90),(14,89),(15,96),(16,95),(18,24),(19,23),(20,22),(25,43),(26,42),(27,41),(28,48),(29,47),(30,46),(31,45),(32,44),(33,37),(34,36),(38,40),(49,60),(50,59),(51,58),(52,57),(53,64),(54,63),(55,62),(56,61),(66,72),(67,71),(68,70),(73,77),(74,76),(78,80),(81,85),(82,84),(86,88)]])

48 conjugacy classes

class 1 2A2B2C2D2E2F3A3B4A4B4C4D4E6A···6F6G6H6I6J6K6L8A8B8C8D12A12B12C12D12E12F12G12H12I12J24A···24H
order122222233444446···666666688881212121212121212121224···24
size111148811224881···1448888444422224488884···4

48 irreducible representations

dim1111111111112222222244
type++++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6D4D4D4C4○D4C3×D4C3×D4C3×D4C3×C4○D4C8⋊C22C3×C8⋊C22
kernelC3×C82D4C3×D4⋊C4C3×C4.Q8C3×C4⋊D4C6×M4(2)C6×D8C82D4D4⋊C4C4.Q8C4⋊D4C2×M4(2)C2×D8C24C2×C12C22×C6C12C8C2×C4C23C4C6C2
# reps1212112424222112422424

Matrix representation of C3×C82D4 in GL8(𝔽73)

80000000
08000000
00100000
00010000
00001000
00000100
00000010
00000001
,
460000000
7127000000
00100000
00010000
00002350015
000059231558
0000694064
000026512327
,
7227000000
01000000
007210000
007110000
00000010
00005617722
00001000
00007221756
,
146000000
072000000
00100000
002720000
00001000
000007200
00000010
0000170172

G:=sub<GL(8,GF(73))| [8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[46,71,0,0,0,0,0,0,0,27,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,23,59,69,26,0,0,0,0,50,23,4,51,0,0,0,0,0,15,0,23,0,0,0,0,15,58,64,27],[72,0,0,0,0,0,0,0,27,1,0,0,0,0,0,0,0,0,72,71,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,56,1,72,0,0,0,0,0,17,0,2,0,0,0,0,1,72,0,17,0,0,0,0,0,2,0,56],[1,0,0,0,0,0,0,0,46,72,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,0,0,17,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,72] >;

C3×C82D4 in GAP, Magma, Sage, TeX

C_3\times C_8\rtimes_2D_4
% in TeX

G:=Group("C3xC8:2D4");
// GroupNames label

G:=SmallGroup(192,902);
// by ID

G=gap.SmallGroup(192,902);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,365,848,1094,1059,4204,172]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^8=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^3,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽