Extensions 1→N→G→Q→1 with N=C2×Q16 and Q=S3

Direct product G=N×Q with N=C2×Q16 and Q=S3
dρLabelID
C2×S3×Q1696C2xS3xQ16192,1322

Semidirect products G=N:Q with N=C2×Q16 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×Q16)⋊1S3 = C2×C8.6D6φ: S3/C3C2 ⊆ Out C2×Q1696(C2xQ16):1S3192,737
(C2×Q16)⋊2S3 = (C2×Q16)⋊S3φ: S3/C3C2 ⊆ Out C2×Q1696(C2xQ16):2S3192,744
(C2×Q16)⋊3S3 = D65Q16φ: S3/C3C2 ⊆ Out C2×Q1696(C2xQ16):3S3192,745
(C2×Q16)⋊4S3 = D12.17D4φ: S3/C3C2 ⊆ Out C2×Q1696(C2xQ16):4S3192,746
(C2×Q16)⋊5S3 = D63Q16φ: S3/C3C2 ⊆ Out C2×Q1696(C2xQ16):5S3192,747
(C2×Q16)⋊6S3 = C24.28D4φ: S3/C3C2 ⊆ Out C2×Q1696(C2xQ16):6S3192,750
(C2×Q16)⋊7S3 = C24.27C23φ: S3/C3C2 ⊆ Out C2×Q16964(C2xQ16):7S3192,738
(C2×Q16)⋊8S3 = C24.36D4φ: S3/C3C2 ⊆ Out C2×Q1696(C2xQ16):8S3192,748
(C2×Q16)⋊9S3 = C24.37D4φ: S3/C3C2 ⊆ Out C2×Q1696(C2xQ16):9S3192,749
(C2×Q16)⋊10S3 = C24.29D4φ: S3/C3C2 ⊆ Out C2×Q16964(C2xQ16):10S3192,751
(C2×Q16)⋊11S3 = C2×Q16⋊S3φ: S3/C3C2 ⊆ Out C2×Q1696(C2xQ16):11S3192,1323
(C2×Q16)⋊12S3 = D12.30D4φ: S3/C3C2 ⊆ Out C2×Q16964(C2xQ16):12S3192,1325
(C2×Q16)⋊13S3 = C2×D24⋊C2φ: trivial image96(C2xQ16):13S3192,1324

Non-split extensions G=N.Q with N=C2×Q16 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×Q16).1S3 = C6.5Q32φ: S3/C3C2 ⊆ Out C2×Q16192(C2xQ16).1S3192,123
(C2×Q16).2S3 = C2×C3⋊Q32φ: S3/C3C2 ⊆ Out C2×Q16192(C2xQ16).2S3192,739
(C2×Q16).3S3 = Dic33Q16φ: S3/C3C2 ⊆ Out C2×Q16192(C2xQ16).3S3192,741
(C2×Q16).4S3 = C24.26D4φ: S3/C3C2 ⊆ Out C2×Q16192(C2xQ16).4S3192,742
(C2×Q16).5S3 = Q16.Dic3φ: S3/C3C2 ⊆ Out C2×Q16964(C2xQ16).5S3192,124
(C2×Q16).6S3 = Q16⋊Dic3φ: S3/C3C2 ⊆ Out C2×Q16192(C2xQ16).6S3192,743
(C2×Q16).7S3 = Dic3×Q16φ: trivial image192(C2xQ16).7S3192,740

׿
×
𝔽