Copied to
clipboard

G = C24.37D4order 192 = 26·3

37th non-split extension by C24 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.37D4, C3⋊C8.10D4, (C2×Q16)⋊9S3, C4.28(S3×D4), (C2×C8).96D6, (C6×Q16)⋊10C2, C24⋊C410C2, C8.6(C3⋊D4), C35(C8.2D4), (C2×Q8).90D6, C12.188(C2×D4), Dic3⋊Q86C2, C6.34(C41D4), (C2×Dic3).78D4, C22.281(S3×D4), (C6×Q8).93C22, C2.25(C123D4), (C2×C12).464C23, (C2×C24).151C22, C12.23D4.6C2, C2.31(Q16⋊S3), C6.81(C8.C22), (C2×D12).126C22, (C4×Dic3).56C22, (C2×Dic6).133C22, C4.15(C2×C3⋊D4), (C2×C24⋊C2).8C2, (C2×C3⋊Q16)⋊21C2, (C2×C6).375(C2×D4), (C2×C3⋊C8).168C22, (C2×Q82S3).9C2, (C2×C4).552(C22×S3), SmallGroup(192,749)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C24.37D4
C1C3C6C2×C6C2×C12C2×D12C2×C24⋊C2 — C24.37D4
C3C6C2×C12 — C24.37D4
C1C22C2×C4C2×Q16

Generators and relations for C24.37D4
 G = < a,b,c | a24=b4=c2=1, bab-1=a5, cac=a11, cbc=a12b-1 >

Subgroups: 376 in 124 conjugacy classes, 43 normal (31 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, C12, D6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, Q16, C2×D4, C2×Q8, C2×Q8, C3⋊C8, C24, Dic6, D12, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×Q8, C22×S3, C8⋊C4, C4.4D4, C4⋊Q8, C2×SD16, C2×Q16, C2×Q16, C24⋊C2, C2×C3⋊C8, C4×Dic3, Dic3⋊C4, D6⋊C4, Q82S3, C3⋊Q16, C2×C24, C3×Q16, C2×Dic6, C2×D12, C6×Q8, C8.2D4, C24⋊C4, C2×C24⋊C2, C2×Q82S3, C2×C3⋊Q16, Dic3⋊Q8, C12.23D4, C6×Q16, C24.37D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊D4, C22×S3, C41D4, C8.C22, S3×D4, C2×C3⋊D4, C8.2D4, Q16⋊S3, C123D4, C24.37D4

Character table of C24.37D4

 class 12A2B2C2D34A4B4C4D4E4F4G6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
 size 111124222881212242224412124488884444
ρ1111111111111111111111111111111    trivial
ρ21111-1111-11111111-1-1-1-11111-1-1-1-1-1-1    linear of order 2
ρ31111-111111-1-1-111111-1-11111111111    linear of order 2
ρ411111111-11-1-1-1111-1-1111111-1-1-1-1-1-1    linear of order 2
ρ5111111111-111-1111-1-1-1-111-1-111-1-1-1-1    linear of order 2
ρ61111-1111-1-111-1111111111-1-1-1-11111    linear of order 2
ρ71111-11111-1-1-11111-1-11111-1-111-1-1-1-1    linear of order 2
ρ811111111-1-1-1-1111111-1-111-1-1-1-11111    linear of order 2
ρ922-2-202-22000002-2-2-22002-20000-2-222    orthogonal lifted from D4
ρ1022-2-202-22000002-2-22-2002-2000022-2-2    orthogonal lifted from D4
ρ1122-2-2022-2000002-2-2002-2-2200000000    orthogonal lifted from D4
ρ1222220-12222000-1-1-12200-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1322220-122-22000-1-1-1-2-200-1-1-1-1111111    orthogonal lifted from D6
ρ14222202-2-200-2202220000-2-200000000    orthogonal lifted from D4
ρ1522-2-2022-2000002-2-200-22-2200000000    orthogonal lifted from D4
ρ1622220-122-2-2000-1-1-12200-1-11111-1-1-1-1    orthogonal lifted from D6
ρ17222202-2-2002-202220000-2-200000000    orthogonal lifted from D4
ρ1822220-1222-2000-1-1-1-2-200-1-111-1-11111    orthogonal lifted from D6
ρ1922-2-20-1-2200000-111-2200-11-3--3-3--311-1-1    complex lifted from C3⋊D4
ρ2022-2-20-1-2200000-1112-200-11--3-3-3--3-1-111    complex lifted from C3⋊D4
ρ2122-2-20-1-2200000-111-2200-11--3-3--3-311-1-1    complex lifted from C3⋊D4
ρ2222-2-20-1-2200000-1112-200-11-3--3--3-3-1-111    complex lifted from C3⋊D4
ρ2344440-2-4-400000-2-2-200002200000000    orthogonal lifted from S3×D4
ρ2444-4-40-24-400000-22200002-200000000    orthogonal lifted from S3×D4
ρ254-44-4040000000-4-4400000000000000    symplectic lifted from C8.C22, Schur index 2
ρ264-4-44040000000-44-400000000000000    symplectic lifted from C8.C22, Schur index 2
ρ274-44-40-2000000022-20000000000--6-6-6--6    complex lifted from Q16⋊S3
ρ284-4-440-200000002-220000000000-6--6-6--6    complex lifted from Q16⋊S3
ρ294-44-40-2000000022-20000000000-6--6--6-6    complex lifted from Q16⋊S3
ρ304-4-440-200000002-220000000000--6-6--6-6    complex lifted from Q16⋊S3

Smallest permutation representation of C24.37D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 43 63 74)(2 48 64 79)(3 29 65 84)(4 34 66 89)(5 39 67 94)(6 44 68 75)(7 25 69 80)(8 30 70 85)(9 35 71 90)(10 40 72 95)(11 45 49 76)(12 26 50 81)(13 31 51 86)(14 36 52 91)(15 41 53 96)(16 46 54 77)(17 27 55 82)(18 32 56 87)(19 37 57 92)(20 42 58 73)(21 47 59 78)(22 28 60 83)(23 33 61 88)(24 38 62 93)
(2 12)(3 23)(4 10)(5 21)(6 8)(7 19)(9 17)(11 15)(14 24)(16 22)(18 20)(25 80)(26 91)(27 78)(28 89)(29 76)(30 87)(31 74)(32 85)(33 96)(34 83)(35 94)(36 81)(37 92)(38 79)(39 90)(40 77)(41 88)(42 75)(43 86)(44 73)(45 84)(46 95)(47 82)(48 93)(49 53)(50 64)(52 62)(54 60)(55 71)(56 58)(57 69)(59 67)(61 65)(66 72)(68 70)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,43,63,74)(2,48,64,79)(3,29,65,84)(4,34,66,89)(5,39,67,94)(6,44,68,75)(7,25,69,80)(8,30,70,85)(9,35,71,90)(10,40,72,95)(11,45,49,76)(12,26,50,81)(13,31,51,86)(14,36,52,91)(15,41,53,96)(16,46,54,77)(17,27,55,82)(18,32,56,87)(19,37,57,92)(20,42,58,73)(21,47,59,78)(22,28,60,83)(23,33,61,88)(24,38,62,93), (2,12)(3,23)(4,10)(5,21)(6,8)(7,19)(9,17)(11,15)(14,24)(16,22)(18,20)(25,80)(26,91)(27,78)(28,89)(29,76)(30,87)(31,74)(32,85)(33,96)(34,83)(35,94)(36,81)(37,92)(38,79)(39,90)(40,77)(41,88)(42,75)(43,86)(44,73)(45,84)(46,95)(47,82)(48,93)(49,53)(50,64)(52,62)(54,60)(55,71)(56,58)(57,69)(59,67)(61,65)(66,72)(68,70)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,43,63,74)(2,48,64,79)(3,29,65,84)(4,34,66,89)(5,39,67,94)(6,44,68,75)(7,25,69,80)(8,30,70,85)(9,35,71,90)(10,40,72,95)(11,45,49,76)(12,26,50,81)(13,31,51,86)(14,36,52,91)(15,41,53,96)(16,46,54,77)(17,27,55,82)(18,32,56,87)(19,37,57,92)(20,42,58,73)(21,47,59,78)(22,28,60,83)(23,33,61,88)(24,38,62,93), (2,12)(3,23)(4,10)(5,21)(6,8)(7,19)(9,17)(11,15)(14,24)(16,22)(18,20)(25,80)(26,91)(27,78)(28,89)(29,76)(30,87)(31,74)(32,85)(33,96)(34,83)(35,94)(36,81)(37,92)(38,79)(39,90)(40,77)(41,88)(42,75)(43,86)(44,73)(45,84)(46,95)(47,82)(48,93)(49,53)(50,64)(52,62)(54,60)(55,71)(56,58)(57,69)(59,67)(61,65)(66,72)(68,70) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,43,63,74),(2,48,64,79),(3,29,65,84),(4,34,66,89),(5,39,67,94),(6,44,68,75),(7,25,69,80),(8,30,70,85),(9,35,71,90),(10,40,72,95),(11,45,49,76),(12,26,50,81),(13,31,51,86),(14,36,52,91),(15,41,53,96),(16,46,54,77),(17,27,55,82),(18,32,56,87),(19,37,57,92),(20,42,58,73),(21,47,59,78),(22,28,60,83),(23,33,61,88),(24,38,62,93)], [(2,12),(3,23),(4,10),(5,21),(6,8),(7,19),(9,17),(11,15),(14,24),(16,22),(18,20),(25,80),(26,91),(27,78),(28,89),(29,76),(30,87),(31,74),(32,85),(33,96),(34,83),(35,94),(36,81),(37,92),(38,79),(39,90),(40,77),(41,88),(42,75),(43,86),(44,73),(45,84),(46,95),(47,82),(48,93),(49,53),(50,64),(52,62),(54,60),(55,71),(56,58),(57,69),(59,67),(61,65),(66,72),(68,70)]])

Matrix representation of C24.37D4 in GL6(𝔽73)

7230000
4810000
0011626211
0011226251
00423100
00421100
,
1700000
25720000
004551836
0051691855
0064552218
006496951
,
7200000
4810000
001000
00727200
0010720
00727211

G:=sub<GL(6,GF(73))| [72,48,0,0,0,0,3,1,0,0,0,0,0,0,11,11,42,42,0,0,62,22,31,11,0,0,62,62,0,0,0,0,11,51,0,0],[1,25,0,0,0,0,70,72,0,0,0,0,0,0,4,51,64,64,0,0,55,69,55,9,0,0,18,18,22,69,0,0,36,55,18,51],[72,48,0,0,0,0,0,1,0,0,0,0,0,0,1,72,1,72,0,0,0,72,0,72,0,0,0,0,72,1,0,0,0,0,0,1] >;

C24.37D4 in GAP, Magma, Sage, TeX

C_{24}._{37}D_4
% in TeX

G:=Group("C24.37D4");
// GroupNames label

G:=SmallGroup(192,749);
// by ID

G=gap.SmallGroup(192,749);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,120,254,219,184,1684,438,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=b^4=c^2=1,b*a*b^-1=a^5,c*a*c=a^11,c*b*c=a^12*b^-1>;
// generators/relations

Export

Character table of C24.37D4 in TeX

׿
×
𝔽