Extensions 1→N→G→Q→1 with N=C6 and Q=C2xQ16

Direct product G=NxQ with N=C6 and Q=C2xQ16
dρLabelID
C2xC6xQ16192C2xC6xQ16192,1460

Semidirect products G=N:Q with N=C6 and Q=C2xQ16
extensionφ:Q→Aut NdρLabelID
C6:1(C2xQ16) = C22xDic12φ: C2xQ16/C2xC8C2 ⊆ Aut C6192C6:1(C2xQ16)192,1301
C6:2(C2xQ16) = C2xS3xQ16φ: C2xQ16/Q16C2 ⊆ Aut C696C6:2(C2xQ16)192,1322
C6:3(C2xQ16) = C22xC3:Q16φ: C2xQ16/C2xQ8C2 ⊆ Aut C6192C6:3(C2xQ16)192,1368

Non-split extensions G=N.Q with N=C6 and Q=C2xQ16
extensionφ:Q→Aut NdρLabelID
C6.1(C2xQ16) = C12.14Q16φ: C2xQ16/C2xC8C2 ⊆ Aut C6192C6.1(C2xQ16)192,240
C6.2(C2xQ16) = C24:8Q8φ: C2xQ16/C2xC8C2 ⊆ Aut C6192C6.2(C2xQ16)192,241
C6.3(C2xQ16) = C4xDic12φ: C2xQ16/C2xC8C2 ⊆ Aut C6192C6.3(C2xQ16)192,257
C6.4(C2xQ16) = C12:4Q16φ: C2xQ16/C2xC8C2 ⊆ Aut C6192C6.4(C2xQ16)192,258
C6.5(C2xQ16) = C23.40D12φ: C2xQ16/C2xC8C2 ⊆ Aut C696C6.5(C2xQ16)192,281
C6.6(C2xQ16) = Dic6.32D4φ: C2xQ16/C2xC8C2 ⊆ Aut C696C6.6(C2xQ16)192,298
C6.7(C2xQ16) = C4:Dic12φ: C2xQ16/C2xC8C2 ⊆ Aut C6192C6.7(C2xQ16)192,408
C6.8(C2xQ16) = Dic6:3Q8φ: C2xQ16/C2xC8C2 ⊆ Aut C6192C6.8(C2xQ16)192,409
C6.9(C2xQ16) = C2xC2.Dic12φ: C2xQ16/C2xC8C2 ⊆ Aut C6192C6.9(C2xQ16)192,662
C6.10(C2xQ16) = C2xC24:1C4φ: C2xQ16/C2xC8C2 ⊆ Aut C6192C6.10(C2xQ16)192,664
C6.11(C2xQ16) = C24.82D4φ: C2xQ16/C2xC8C2 ⊆ Aut C696C6.11(C2xQ16)192,675
C6.12(C2xQ16) = Dic3:4Q16φ: C2xQ16/Q16C2 ⊆ Aut C6192C6.12(C2xQ16)192,349
C6.13(C2xQ16) = Dic3.1Q16φ: C2xQ16/Q16C2 ⊆ Aut C6192C6.13(C2xQ16)192,351
C6.14(C2xQ16) = Q8:3Dic6φ: C2xQ16/Q16C2 ⊆ Aut C6192C6.14(C2xQ16)192,352
C6.15(C2xQ16) = Dic3:Q16φ: C2xQ16/Q16C2 ⊆ Aut C6192C6.15(C2xQ16)192,354
C6.16(C2xQ16) = S3xQ8:C4φ: C2xQ16/Q16C2 ⊆ Aut C696C6.16(C2xQ16)192,360
C6.17(C2xQ16) = D6:Q16φ: C2xQ16/Q16C2 ⊆ Aut C696C6.17(C2xQ16)192,368
C6.18(C2xQ16) = D6.Q16φ: C2xQ16/Q16C2 ⊆ Aut C696C6.18(C2xQ16)192,370
C6.19(C2xQ16) = D6:1Q16φ: C2xQ16/Q16C2 ⊆ Aut C696C6.19(C2xQ16)192,372
C6.20(C2xQ16) = Dic3:5Q16φ: C2xQ16/Q16C2 ⊆ Aut C6192C6.20(C2xQ16)192,432
C6.21(C2xQ16) = C24:2Q8φ: C2xQ16/Q16C2 ⊆ Aut C6192C6.21(C2xQ16)192,433
C6.22(C2xQ16) = Dic3.Q16φ: C2xQ16/Q16C2 ⊆ Aut C6192C6.22(C2xQ16)192,434
C6.23(C2xQ16) = S3xC2.D8φ: C2xQ16/Q16C2 ⊆ Aut C696C6.23(C2xQ16)192,438
C6.24(C2xQ16) = D6.2Q16φ: C2xQ16/Q16C2 ⊆ Aut C696C6.24(C2xQ16)192,443
C6.25(C2xQ16) = D6:2Q16φ: C2xQ16/Q16C2 ⊆ Aut C696C6.25(C2xQ16)192,446
C6.26(C2xQ16) = Dic3xQ16φ: C2xQ16/Q16C2 ⊆ Aut C6192C6.26(C2xQ16)192,740
C6.27(C2xQ16) = Dic3:3Q16φ: C2xQ16/Q16C2 ⊆ Aut C6192C6.27(C2xQ16)192,741
C6.28(C2xQ16) = C24.26D4φ: C2xQ16/Q16C2 ⊆ Aut C6192C6.28(C2xQ16)192,742
C6.29(C2xQ16) = D6:5Q16φ: C2xQ16/Q16C2 ⊆ Aut C696C6.29(C2xQ16)192,745
C6.30(C2xQ16) = D6:3Q16φ: C2xQ16/Q16C2 ⊆ Aut C696C6.30(C2xQ16)192,747
C6.31(C2xQ16) = C2xC6.Q16φ: C2xQ16/C2xQ8C2 ⊆ Aut C6192C6.31(C2xQ16)192,521
C6.32(C2xQ16) = C2xC6.SD16φ: C2xQ16/C2xQ8C2 ⊆ Aut C6192C6.32(C2xQ16)192,528
C6.33(C2xQ16) = C4:C4.230D6φ: C2xQ16/C2xQ8C2 ⊆ Aut C696C6.33(C2xQ16)192,529
C6.34(C2xQ16) = Q8:5Dic6φ: C2xQ16/C2xQ8C2 ⊆ Aut C6192C6.34(C2xQ16)192,580
C6.35(C2xQ16) = C4xC3:Q16φ: C2xQ16/C2xQ8C2 ⊆ Aut C6192C6.35(C2xQ16)192,588
C6.36(C2xQ16) = C12:7Q16φ: C2xQ16/C2xQ8C2 ⊆ Aut C6192C6.36(C2xQ16)192,590
C6.37(C2xQ16) = (C2xC6).Q16φ: C2xQ16/C2xQ8C2 ⊆ Aut C696C6.37(C2xQ16)192,603
C6.38(C2xQ16) = Dic6.37D4φ: C2xQ16/C2xQ8C2 ⊆ Aut C696C6.38(C2xQ16)192,609
C6.39(C2xQ16) = C3:C8.29D4φ: C2xQ16/C2xQ8C2 ⊆ Aut C696C6.39(C2xQ16)192,610
C6.40(C2xQ16) = C12.17D8φ: C2xQ16/C2xQ8C2 ⊆ Aut C6192C6.40(C2xQ16)192,637
C6.41(C2xQ16) = C12.9Q16φ: C2xQ16/C2xQ8C2 ⊆ Aut C6192C6.41(C2xQ16)192,638
C6.42(C2xQ16) = C12:Q16φ: C2xQ16/C2xQ8C2 ⊆ Aut C6192C6.42(C2xQ16)192,649
C6.43(C2xQ16) = Dic6:5Q8φ: C2xQ16/C2xQ8C2 ⊆ Aut C6192C6.43(C2xQ16)192,650
C6.44(C2xQ16) = C12:3Q16φ: C2xQ16/C2xQ8C2 ⊆ Aut C6192C6.44(C2xQ16)192,651
C6.45(C2xQ16) = C12.Q16φ: C2xQ16/C2xQ8C2 ⊆ Aut C6192C6.45(C2xQ16)192,652
C6.46(C2xQ16) = C2xQ8:2Dic3φ: C2xQ16/C2xQ8C2 ⊆ Aut C6192C6.46(C2xQ16)192,783
C6.47(C2xQ16) = (C2xC6):8Q16φ: C2xQ16/C2xQ8C2 ⊆ Aut C696C6.47(C2xQ16)192,787
C6.48(C2xQ16) = C6xQ8:C4central extension (φ=1)192C6.48(C2xQ16)192,848
C6.49(C2xQ16) = C6xC2.D8central extension (φ=1)192C6.49(C2xQ16)192,859
C6.50(C2xQ16) = C12xQ16central extension (φ=1)192C6.50(C2xQ16)192,872
C6.51(C2xQ16) = C3xC22:Q16central extension (φ=1)96C6.51(C2xQ16)192,884
C6.52(C2xQ16) = C3xC4:2Q16central extension (φ=1)192C6.52(C2xQ16)192,895
C6.53(C2xQ16) = C3xC8.18D4central extension (φ=1)96C6.53(C2xQ16)192,900
C6.54(C2xQ16) = C3xC4.Q16central extension (φ=1)192C6.54(C2xQ16)192,910
C6.55(C2xQ16) = C3xC23.48D4central extension (φ=1)96C6.55(C2xQ16)192,917
C6.56(C2xQ16) = C3xC4.SD16central extension (φ=1)192C6.56(C2xQ16)192,920
C6.57(C2xQ16) = C3xC4:Q16central extension (φ=1)192C6.57(C2xQ16)192,927
C6.58(C2xQ16) = C3xC8:2Q8central extension (φ=1)192C6.58(C2xQ16)192,933

׿
x
:
Z
F
o
wr
Q
<