Copied to
clipboard

G = D6⋊Q16order 192 = 26·3

1st semidirect product of D6 and Q16 acting via Q16/Q8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D64Q16, Q8.12D12, Dic6.12D4, D6⋊C8.2C2, C4⋊C4.26D6, (C2×C8).16D6, C4.7(C2×D12), C4.94(S3×D4), (C3×Q8).2D4, C2.9(S3×Q16), Q8⋊C44S3, C6.17(C2×Q16), C6.25C22≀C2, (C2×Dic12)⋊6C2, C12.123(C2×D4), C4.D12.1C2, (C2×Q8).133D6, C32(C22⋊Q16), C6.SD1612C2, (C2×C24).16C22, (C2×Dic3).31D4, (C22×S3).78D4, C22.199(S3×D4), (C6×Q8).32C22, C2.28(D6⋊D4), (C2×C12).249C23, C2.17(D4.D6), C6.35(C8.C22), (C2×Dic6).72C22, (C2×S3×Q8).4C2, (C2×C3⋊Q16)⋊4C2, (C3×Q8⋊C4)⋊4C2, (C2×C6).262(C2×D4), (C2×C3⋊C8).40C22, (S3×C2×C4).22C22, (C3×C4⋊C4).50C22, (C2×C4).356(C22×S3), SmallGroup(192,368)

Series: Derived Chief Lower central Upper central

C1C2×C12 — D6⋊Q16
C1C3C6C2×C6C2×C12S3×C2×C4C2×S3×Q8 — D6⋊Q16
C3C6C2×C12 — D6⋊Q16
C1C22C2×C4Q8⋊C4

Generators and relations for D6⋊Q16
 G = < a,b,c,d | a6=b2=c8=1, d2=c4, bab=cac-1=dad-1=a-1, cbc-1=dbd-1=ab, dcd-1=c-1 >

Subgroups: 424 in 148 conjugacy classes, 45 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, Q8, Q8, C23, Dic3, C12, C12, D6, D6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C22×C4, C2×Q8, C2×Q8, C3⋊C8, C24, Dic6, Dic6, C4×S3, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×Q8, C3×Q8, C22×S3, C22⋊C8, Q8⋊C4, Q8⋊C4, C22⋊Q8, C2×Q16, C22×Q8, Dic12, C2×C3⋊C8, C4⋊Dic3, D6⋊C4, C3⋊Q16, C3×C4⋊C4, C2×C24, C2×Dic6, C2×Dic6, S3×C2×C4, S3×C2×C4, S3×Q8, C6×Q8, C22⋊Q16, C6.SD16, D6⋊C8, C3×Q8⋊C4, C4.D12, C2×Dic12, C2×C3⋊Q16, C2×S3×Q8, D6⋊Q16
Quotients: C1, C2, C22, S3, D4, C23, D6, Q16, C2×D4, D12, C22×S3, C22≀C2, C2×Q16, C8.C22, C2×D12, S3×D4, C22⋊Q16, D6⋊D4, D4.D6, S3×Q16, D6⋊Q16

Smallest permutation representation of D6⋊Q16
On 96 points
Generators in S96
(1 52 87 41 93 13)(2 14 94 42 88 53)(3 54 81 43 95 15)(4 16 96 44 82 55)(5 56 83 45 89 9)(6 10 90 46 84 49)(7 50 85 47 91 11)(8 12 92 48 86 51)(17 59 28 37 75 71)(18 72 76 38 29 60)(19 61 30 39 77 65)(20 66 78 40 31 62)(21 63 32 33 79 67)(22 68 80 34 25 64)(23 57 26 35 73 69)(24 70 74 36 27 58)
(1 9)(2 90)(3 11)(4 92)(5 13)(6 94)(7 15)(8 96)(10 14)(12 16)(17 32)(18 64)(19 26)(20 58)(21 28)(22 60)(23 30)(24 62)(25 72)(27 66)(29 68)(31 70)(33 71)(34 76)(35 65)(36 78)(37 67)(38 80)(39 69)(40 74)(41 83)(42 49)(43 85)(44 51)(45 87)(46 53)(47 81)(48 55)(50 95)(52 89)(54 91)(56 93)(57 61)(59 63)(73 77)(75 79)(82 86)(84 88)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 33 5 37)(2 40 6 36)(3 39 7 35)(4 38 8 34)(9 75 13 79)(10 74 14 78)(11 73 15 77)(12 80 16 76)(17 41 21 45)(18 48 22 44)(19 47 23 43)(20 46 24 42)(25 55 29 51)(26 54 30 50)(27 53 31 49)(28 52 32 56)(57 81 61 85)(58 88 62 84)(59 87 63 83)(60 86 64 82)(65 91 69 95)(66 90 70 94)(67 89 71 93)(68 96 72 92)

G:=sub<Sym(96)| (1,52,87,41,93,13)(2,14,94,42,88,53)(3,54,81,43,95,15)(4,16,96,44,82,55)(5,56,83,45,89,9)(6,10,90,46,84,49)(7,50,85,47,91,11)(8,12,92,48,86,51)(17,59,28,37,75,71)(18,72,76,38,29,60)(19,61,30,39,77,65)(20,66,78,40,31,62)(21,63,32,33,79,67)(22,68,80,34,25,64)(23,57,26,35,73,69)(24,70,74,36,27,58), (1,9)(2,90)(3,11)(4,92)(5,13)(6,94)(7,15)(8,96)(10,14)(12,16)(17,32)(18,64)(19,26)(20,58)(21,28)(22,60)(23,30)(24,62)(25,72)(27,66)(29,68)(31,70)(33,71)(34,76)(35,65)(36,78)(37,67)(38,80)(39,69)(40,74)(41,83)(42,49)(43,85)(44,51)(45,87)(46,53)(47,81)(48,55)(50,95)(52,89)(54,91)(56,93)(57,61)(59,63)(73,77)(75,79)(82,86)(84,88), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,33,5,37)(2,40,6,36)(3,39,7,35)(4,38,8,34)(9,75,13,79)(10,74,14,78)(11,73,15,77)(12,80,16,76)(17,41,21,45)(18,48,22,44)(19,47,23,43)(20,46,24,42)(25,55,29,51)(26,54,30,50)(27,53,31,49)(28,52,32,56)(57,81,61,85)(58,88,62,84)(59,87,63,83)(60,86,64,82)(65,91,69,95)(66,90,70,94)(67,89,71,93)(68,96,72,92)>;

G:=Group( (1,52,87,41,93,13)(2,14,94,42,88,53)(3,54,81,43,95,15)(4,16,96,44,82,55)(5,56,83,45,89,9)(6,10,90,46,84,49)(7,50,85,47,91,11)(8,12,92,48,86,51)(17,59,28,37,75,71)(18,72,76,38,29,60)(19,61,30,39,77,65)(20,66,78,40,31,62)(21,63,32,33,79,67)(22,68,80,34,25,64)(23,57,26,35,73,69)(24,70,74,36,27,58), (1,9)(2,90)(3,11)(4,92)(5,13)(6,94)(7,15)(8,96)(10,14)(12,16)(17,32)(18,64)(19,26)(20,58)(21,28)(22,60)(23,30)(24,62)(25,72)(27,66)(29,68)(31,70)(33,71)(34,76)(35,65)(36,78)(37,67)(38,80)(39,69)(40,74)(41,83)(42,49)(43,85)(44,51)(45,87)(46,53)(47,81)(48,55)(50,95)(52,89)(54,91)(56,93)(57,61)(59,63)(73,77)(75,79)(82,86)(84,88), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,33,5,37)(2,40,6,36)(3,39,7,35)(4,38,8,34)(9,75,13,79)(10,74,14,78)(11,73,15,77)(12,80,16,76)(17,41,21,45)(18,48,22,44)(19,47,23,43)(20,46,24,42)(25,55,29,51)(26,54,30,50)(27,53,31,49)(28,52,32,56)(57,81,61,85)(58,88,62,84)(59,87,63,83)(60,86,64,82)(65,91,69,95)(66,90,70,94)(67,89,71,93)(68,96,72,92) );

G=PermutationGroup([[(1,52,87,41,93,13),(2,14,94,42,88,53),(3,54,81,43,95,15),(4,16,96,44,82,55),(5,56,83,45,89,9),(6,10,90,46,84,49),(7,50,85,47,91,11),(8,12,92,48,86,51),(17,59,28,37,75,71),(18,72,76,38,29,60),(19,61,30,39,77,65),(20,66,78,40,31,62),(21,63,32,33,79,67),(22,68,80,34,25,64),(23,57,26,35,73,69),(24,70,74,36,27,58)], [(1,9),(2,90),(3,11),(4,92),(5,13),(6,94),(7,15),(8,96),(10,14),(12,16),(17,32),(18,64),(19,26),(20,58),(21,28),(22,60),(23,30),(24,62),(25,72),(27,66),(29,68),(31,70),(33,71),(34,76),(35,65),(36,78),(37,67),(38,80),(39,69),(40,74),(41,83),(42,49),(43,85),(44,51),(45,87),(46,53),(47,81),(48,55),(50,95),(52,89),(54,91),(56,93),(57,61),(59,63),(73,77),(75,79),(82,86),(84,88)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,33,5,37),(2,40,6,36),(3,39,7,35),(4,38,8,34),(9,75,13,79),(10,74,14,78),(11,73,15,77),(12,80,16,76),(17,41,21,45),(18,48,22,44),(19,47,23,43),(20,46,24,42),(25,55,29,51),(26,54,30,50),(27,53,31,49),(28,52,32,56),(57,81,61,85),(58,88,62,84),(59,87,63,83),(60,86,64,82),(65,91,69,95),(66,90,70,94),(67,89,71,93),(68,96,72,92)]])

33 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
order1222223444444444666888812121212121224242424
size111166222448121212242224412124488884444

33 irreducible representations

dim11111111222222222244444
type++++++++++++++++-+-++--
imageC1C2C2C2C2C2C2C2S3D4D4D4D4D6D6D6Q16D12C8.C22S3×D4S3×D4D4.D6S3×Q16
kernelD6⋊Q16C6.SD16D6⋊C8C3×Q8⋊C4C4.D12C2×Dic12C2×C3⋊Q16C2×S3×Q8Q8⋊C4Dic6C2×Dic3C3×Q8C22×S3C4⋊C4C2×C8C2×Q8D6Q8C6C4C22C2C2
# reps11111111121211114411122

Matrix representation of D6⋊Q16 in GL4(𝔽73) generated by

1100
72000
0010
0001
,
1100
07200
00720
00072
,
71400
76600
00041
001641
,
71400
76600
004031
001933
G:=sub<GL(4,GF(73))| [1,72,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,1,72,0,0,0,0,72,0,0,0,0,72],[7,7,0,0,14,66,0,0,0,0,0,16,0,0,41,41],[7,7,0,0,14,66,0,0,0,0,40,19,0,0,31,33] >;

D6⋊Q16 in GAP, Magma, Sage, TeX

D_6\rtimes Q_{16}
% in TeX

G:=Group("D6:Q16");
// GroupNames label

G:=SmallGroup(192,368);
// by ID

G=gap.SmallGroup(192,368);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,254,219,226,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^8=1,d^2=c^4,b*a*b=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=a*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽