Extensions 1→N→G→Q→1 with N=C2×C8 and Q=Dic3

Direct product G=N×Q with N=C2×C8 and Q=Dic3
dρLabelID
Dic3×C2×C8192Dic3xC2xC8192,657

Semidirect products G=N:Q with N=C2×C8 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C8)⋊1Dic3 = (C2×C24)⋊C4φ: Dic3/C3C4 ⊆ Aut C2×C8484(C2xC8):1Dic3192,115
(C2×C8)⋊2Dic3 = C12.20C42φ: Dic3/C3C4 ⊆ Aut C2×C8484(C2xC8):2Dic3192,116
(C2×C8)⋊3Dic3 = (C2×C24)⋊5C4φ: Dic3/C6C2 ⊆ Aut C2×C8192(C2xC8):3Dic3192,109
(C2×C8)⋊4Dic3 = C12.9C42φ: Dic3/C6C2 ⊆ Aut C2×C8192(C2xC8):4Dic3192,110
(C2×C8)⋊5Dic3 = C2×C241C4φ: Dic3/C6C2 ⊆ Aut C2×C8192(C2xC8):5Dic3192,664
(C2×C8)⋊6Dic3 = C23.27D12φ: Dic3/C6C2 ⊆ Aut C2×C896(C2xC8):6Dic3192,665
(C2×C8)⋊7Dic3 = C2×C8⋊Dic3φ: Dic3/C6C2 ⊆ Aut C2×C8192(C2xC8):7Dic3192,663
(C2×C8)⋊8Dic3 = C2×C24⋊C4φ: Dic3/C6C2 ⊆ Aut C2×C8192(C2xC8):8Dic3192,659
(C2×C8)⋊9Dic3 = C12.12C42φ: Dic3/C6C2 ⊆ Aut C2×C896(C2xC8):9Dic3192,660

Non-split extensions G=N.Q with N=C2×C8 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C8).1Dic3 = C12.15C42φ: Dic3/C3C4 ⊆ Aut C2×C8484(C2xC8).1Dic3192,25
(C2×C8).2Dic3 = C24.D4φ: Dic3/C3C4 ⊆ Aut C2×C8484(C2xC8).2Dic3192,112
(C2×C8).3Dic3 = C12.21C42φ: Dic3/C3C4 ⊆ Aut C2×C8484(C2xC8).3Dic3192,119
(C2×C8).4Dic3 = C42.279D6φ: Dic3/C6C2 ⊆ Aut C2×C8192(C2xC8).4Dic3192,13
(C2×C8).5Dic3 = C12⋊C16φ: Dic3/C6C2 ⊆ Aut C2×C8192(C2xC8).5Dic3192,21
(C2×C8).6Dic3 = C24.98D4φ: Dic3/C6C2 ⊆ Aut C2×C896(C2xC8).6Dic3192,108
(C2×C8).7Dic3 = C12.10C42φ: Dic3/C6C2 ⊆ Aut C2×C896(C2xC8).7Dic3192,111
(C2×C8).8Dic3 = C241C8φ: Dic3/C6C2 ⊆ Aut C2×C8192(C2xC8).8Dic3192,17
(C2×C8).9Dic3 = C24.1C8φ: Dic3/C6C2 ⊆ Aut C2×C8482(C2xC8).9Dic3192,22
(C2×C8).10Dic3 = C242C8φ: Dic3/C6C2 ⊆ Aut C2×C8192(C2xC8).10Dic3192,16
(C2×C8).11Dic3 = C2×C24.C4φ: Dic3/C6C2 ⊆ Aut C2×C896(C2xC8).11Dic3192,666
(C2×C8).12Dic3 = C24⋊C8φ: Dic3/C6C2 ⊆ Aut C2×C8192(C2xC8).12Dic3192,14
(C2×C8).13Dic3 = C24.C8φ: Dic3/C6C2 ⊆ Aut C2×C8192(C2xC8).13Dic3192,20
(C2×C8).14Dic3 = C3⋊M6(2)φ: Dic3/C6C2 ⊆ Aut C2×C8962(C2xC8).14Dic3192,58
(C2×C8).15Dic3 = C2×C12.C8φ: Dic3/C6C2 ⊆ Aut C2×C896(C2xC8).15Dic3192,656
(C2×C8).16Dic3 = C8×C3⋊C8central extension (φ=1)192(C2xC8).16Dic3192,12
(C2×C8).17Dic3 = C4×C3⋊C16central extension (φ=1)192(C2xC8).17Dic3192,19
(C2×C8).18Dic3 = C2×C3⋊C32central extension (φ=1)192(C2xC8).18Dic3192,57
(C2×C8).19Dic3 = C22×C3⋊C16central extension (φ=1)192(C2xC8).19Dic3192,655

׿
×
𝔽