extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C8).1Dic3 = C12.15C42 | φ: Dic3/C3 → C4 ⊆ Aut C2×C8 | 48 | 4 | (C2xC8).1Dic3 | 192,25 |
(C2×C8).2Dic3 = C24.D4 | φ: Dic3/C3 → C4 ⊆ Aut C2×C8 | 48 | 4 | (C2xC8).2Dic3 | 192,112 |
(C2×C8).3Dic3 = C12.21C42 | φ: Dic3/C3 → C4 ⊆ Aut C2×C8 | 48 | 4 | (C2xC8).3Dic3 | 192,119 |
(C2×C8).4Dic3 = C42.279D6 | φ: Dic3/C6 → C2 ⊆ Aut C2×C8 | 192 | | (C2xC8).4Dic3 | 192,13 |
(C2×C8).5Dic3 = C12⋊C16 | φ: Dic3/C6 → C2 ⊆ Aut C2×C8 | 192 | | (C2xC8).5Dic3 | 192,21 |
(C2×C8).6Dic3 = C24.98D4 | φ: Dic3/C6 → C2 ⊆ Aut C2×C8 | 96 | | (C2xC8).6Dic3 | 192,108 |
(C2×C8).7Dic3 = C12.10C42 | φ: Dic3/C6 → C2 ⊆ Aut C2×C8 | 96 | | (C2xC8).7Dic3 | 192,111 |
(C2×C8).8Dic3 = C24⋊1C8 | φ: Dic3/C6 → C2 ⊆ Aut C2×C8 | 192 | | (C2xC8).8Dic3 | 192,17 |
(C2×C8).9Dic3 = C24.1C8 | φ: Dic3/C6 → C2 ⊆ Aut C2×C8 | 48 | 2 | (C2xC8).9Dic3 | 192,22 |
(C2×C8).10Dic3 = C24⋊2C8 | φ: Dic3/C6 → C2 ⊆ Aut C2×C8 | 192 | | (C2xC8).10Dic3 | 192,16 |
(C2×C8).11Dic3 = C2×C24.C4 | φ: Dic3/C6 → C2 ⊆ Aut C2×C8 | 96 | | (C2xC8).11Dic3 | 192,666 |
(C2×C8).12Dic3 = C24⋊C8 | φ: Dic3/C6 → C2 ⊆ Aut C2×C8 | 192 | | (C2xC8).12Dic3 | 192,14 |
(C2×C8).13Dic3 = C24.C8 | φ: Dic3/C6 → C2 ⊆ Aut C2×C8 | 192 | | (C2xC8).13Dic3 | 192,20 |
(C2×C8).14Dic3 = C3⋊M6(2) | φ: Dic3/C6 → C2 ⊆ Aut C2×C8 | 96 | 2 | (C2xC8).14Dic3 | 192,58 |
(C2×C8).15Dic3 = C2×C12.C8 | φ: Dic3/C6 → C2 ⊆ Aut C2×C8 | 96 | | (C2xC8).15Dic3 | 192,656 |
(C2×C8).16Dic3 = C8×C3⋊C8 | central extension (φ=1) | 192 | | (C2xC8).16Dic3 | 192,12 |
(C2×C8).17Dic3 = C4×C3⋊C16 | central extension (φ=1) | 192 | | (C2xC8).17Dic3 | 192,19 |
(C2×C8).18Dic3 = C2×C3⋊C32 | central extension (φ=1) | 192 | | (C2xC8).18Dic3 | 192,57 |
(C2×C8).19Dic3 = C22×C3⋊C16 | central extension (φ=1) | 192 | | (C2xC8).19Dic3 | 192,655 |