Copied to
clipboard

G = C24.98D4order 192 = 26·3

21st non-split extension by C24 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.98D4, C6.6M5(2), C12.29M4(2), (C2×C6)⋊2C16, (C2×C12).5C8, C222(C3⋊C16), C32(C22⋊C16), C6.10(C2×C16), (C2×C24).11C4, (C2×C8).336D6, C23.3(C3⋊C8), (C22×C6).5C8, (C22×C8).3S3, (C2×C8).6Dic3, C8.52(C3⋊D4), C6.17(C22⋊C8), (C22×C24).25C2, (C22×C12).29C4, C2.3(C12.C8), C12.92(C22⋊C4), (C2×C24).422C22, C4.11(C4.Dic3), (C22×C4).11Dic3, C4.24(C6.D4), C2.2(C12.55D4), C2.5(C2×C3⋊C16), (C2×C3⋊C16)⋊10C2, (C2×C4).4(C3⋊C8), (C2×C6).31(C2×C8), C22.11(C2×C3⋊C8), (C2×C12).312(C2×C4), (C2×C4).93(C2×Dic3), SmallGroup(192,108)

Series: Derived Chief Lower central Upper central

C1C6 — C24.98D4
C1C3C6C12C24C2×C24C2×C3⋊C16 — C24.98D4
C3C6 — C24.98D4
C1C2×C8C22×C8

Generators and relations for C24.98D4
 G = < a,b,c | a24=1, b4=a18, c2=a9, bab-1=cac-1=a17, cbc-1=a15b3 >

Subgroups: 104 in 66 conjugacy classes, 39 normal (29 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C8, C8, C2×C4, C2×C4, C23, C12, C12, C2×C6, C2×C6, C2×C6, C16, C2×C8, C2×C8, C22×C4, C24, C24, C2×C12, C2×C12, C22×C6, C2×C16, C22×C8, C3⋊C16, C2×C24, C2×C24, C22×C12, C22⋊C16, C2×C3⋊C16, C22×C24, C24.98D4
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, D4, Dic3, D6, C16, C22⋊C4, C2×C8, M4(2), C3⋊C8, C2×Dic3, C3⋊D4, C22⋊C8, C2×C16, M5(2), C3⋊C16, C2×C3⋊C8, C4.Dic3, C6.D4, C22⋊C16, C2×C3⋊C16, C12.C8, C12.55D4, C24.98D4

Smallest permutation representation of C24.98D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 35 50 91 19 29 68 85 13 47 62 79 7 41 56 73)(2 28 51 84 20 46 69 78 14 40 63 96 8 34 57 90)(3 45 52 77 21 39 70 95 15 33 64 89 9 27 58 83)(4 38 53 94 22 32 71 88 16 26 65 82 10 44 59 76)(5 31 54 87 23 25 72 81 17 43 66 75 11 37 60 93)(6 48 55 80 24 42 49 74 18 36 67 92 12 30 61 86)
(1 82 10 91 19 76 4 85 13 94 22 79 7 88 16 73)(2 75 11 84 20 93 5 78 14 87 23 96 8 81 17 90)(3 92 12 77 21 86 6 95 15 80 24 89 9 74 18 83)(25 72 34 57 43 66 28 51 37 60 46 69 31 54 40 63)(26 65 35 50 44 59 29 68 38 53 47 62 32 71 41 56)(27 58 36 67 45 52 30 61 39 70 48 55 33 64 42 49)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,35,50,91,19,29,68,85,13,47,62,79,7,41,56,73)(2,28,51,84,20,46,69,78,14,40,63,96,8,34,57,90)(3,45,52,77,21,39,70,95,15,33,64,89,9,27,58,83)(4,38,53,94,22,32,71,88,16,26,65,82,10,44,59,76)(5,31,54,87,23,25,72,81,17,43,66,75,11,37,60,93)(6,48,55,80,24,42,49,74,18,36,67,92,12,30,61,86), (1,82,10,91,19,76,4,85,13,94,22,79,7,88,16,73)(2,75,11,84,20,93,5,78,14,87,23,96,8,81,17,90)(3,92,12,77,21,86,6,95,15,80,24,89,9,74,18,83)(25,72,34,57,43,66,28,51,37,60,46,69,31,54,40,63)(26,65,35,50,44,59,29,68,38,53,47,62,32,71,41,56)(27,58,36,67,45,52,30,61,39,70,48,55,33,64,42,49)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,35,50,91,19,29,68,85,13,47,62,79,7,41,56,73)(2,28,51,84,20,46,69,78,14,40,63,96,8,34,57,90)(3,45,52,77,21,39,70,95,15,33,64,89,9,27,58,83)(4,38,53,94,22,32,71,88,16,26,65,82,10,44,59,76)(5,31,54,87,23,25,72,81,17,43,66,75,11,37,60,93)(6,48,55,80,24,42,49,74,18,36,67,92,12,30,61,86), (1,82,10,91,19,76,4,85,13,94,22,79,7,88,16,73)(2,75,11,84,20,93,5,78,14,87,23,96,8,81,17,90)(3,92,12,77,21,86,6,95,15,80,24,89,9,74,18,83)(25,72,34,57,43,66,28,51,37,60,46,69,31,54,40,63)(26,65,35,50,44,59,29,68,38,53,47,62,32,71,41,56)(27,58,36,67,45,52,30,61,39,70,48,55,33,64,42,49) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,35,50,91,19,29,68,85,13,47,62,79,7,41,56,73),(2,28,51,84,20,46,69,78,14,40,63,96,8,34,57,90),(3,45,52,77,21,39,70,95,15,33,64,89,9,27,58,83),(4,38,53,94,22,32,71,88,16,26,65,82,10,44,59,76),(5,31,54,87,23,25,72,81,17,43,66,75,11,37,60,93),(6,48,55,80,24,42,49,74,18,36,67,92,12,30,61,86)], [(1,82,10,91,19,76,4,85,13,94,22,79,7,88,16,73),(2,75,11,84,20,93,5,78,14,87,23,96,8,81,17,90),(3,92,12,77,21,86,6,95,15,80,24,89,9,74,18,83),(25,72,34,57,43,66,28,51,37,60,46,69,31,54,40,63),(26,65,35,50,44,59,29,68,38,53,47,62,32,71,41,56),(27,58,36,67,45,52,30,61,39,70,48,55,33,64,42,49)]])

72 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F6A···6G8A···8H8I8J8K8L12A···12H16A···16P24A···24P
order12222234444446···68···8888812···1216···1624···24
size11112221111222···21···122222···26···62···2

72 irreducible representations

dim111111112222222222222
type+++++-+-
imageC1C2C2C4C4C8C8C16S3D4Dic3D6Dic3M4(2)C3⋊D4C3⋊C8C3⋊C8M5(2)C4.Dic3C3⋊C16C12.C8
kernelC24.98D4C2×C3⋊C16C22×C24C2×C24C22×C12C2×C12C22×C6C2×C6C22×C8C24C2×C8C2×C8C22×C4C12C8C2×C4C23C6C4C22C2
# reps1212244161211124224488

Matrix representation of C24.98D4 in GL3(𝔽97) generated by

6400
040
0043
,
800
001
0470
,
8900
001
0500
G:=sub<GL(3,GF(97))| [64,0,0,0,4,0,0,0,43],[8,0,0,0,0,47,0,1,0],[89,0,0,0,0,50,0,1,0] >;

C24.98D4 in GAP, Magma, Sage, TeX

C_{24}._{98}D_4
% in TeX

G:=Group("C24.98D4");
// GroupNames label

G:=SmallGroup(192,108);
// by ID

G=gap.SmallGroup(192,108);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,28,141,100,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=1,b^4=a^18,c^2=a^9,b*a*b^-1=c*a*c^-1=a^17,c*b*c^-1=a^15*b^3>;
// generators/relations

׿
×
𝔽