Copied to
clipboard

G = C24.98D4order 192 = 26·3

21st non-split extension by C24 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.98D4, C6.6M5(2), C12.29M4(2), (C2xC6):2C16, (C2xC12).5C8, C22:2(C3:C16), C3:2(C22:C16), C6.10(C2xC16), (C2xC24).11C4, (C2xC8).336D6, C23.3(C3:C8), (C22xC6).5C8, (C22xC8).3S3, (C2xC8).6Dic3, C8.52(C3:D4), C6.17(C22:C8), (C22xC24).25C2, (C22xC12).29C4, C2.3(C12.C8), C12.92(C22:C4), (C2xC24).422C22, C4.11(C4.Dic3), (C22xC4).11Dic3, C4.24(C6.D4), C2.2(C12.55D4), C2.5(C2xC3:C16), (C2xC3:C16):10C2, (C2xC4).4(C3:C8), (C2xC6).31(C2xC8), C22.11(C2xC3:C8), (C2xC12).312(C2xC4), (C2xC4).93(C2xDic3), SmallGroup(192,108)

Series: Derived Chief Lower central Upper central

C1C6 — C24.98D4
C1C3C6C12C24C2xC24C2xC3:C16 — C24.98D4
C3C6 — C24.98D4
C1C2xC8C22xC8

Generators and relations for C24.98D4
 G = < a,b,c | a24=1, b4=a18, c2=a9, bab-1=cac-1=a17, cbc-1=a15b3 >

Subgroups: 104 in 66 conjugacy classes, 39 normal (29 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C8, C8, C2xC4, C2xC4, C23, C12, C12, C2xC6, C2xC6, C2xC6, C16, C2xC8, C2xC8, C22xC4, C24, C24, C2xC12, C2xC12, C22xC6, C2xC16, C22xC8, C3:C16, C2xC24, C2xC24, C22xC12, C22:C16, C2xC3:C16, C22xC24, C24.98D4
Quotients: C1, C2, C4, C22, S3, C8, C2xC4, D4, Dic3, D6, C16, C22:C4, C2xC8, M4(2), C3:C8, C2xDic3, C3:D4, C22:C8, C2xC16, M5(2), C3:C16, C2xC3:C8, C4.Dic3, C6.D4, C22:C16, C2xC3:C16, C12.C8, C12.55D4, C24.98D4

Smallest permutation representation of C24.98D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 35 50 91 19 29 68 85 13 47 62 79 7 41 56 73)(2 28 51 84 20 46 69 78 14 40 63 96 8 34 57 90)(3 45 52 77 21 39 70 95 15 33 64 89 9 27 58 83)(4 38 53 94 22 32 71 88 16 26 65 82 10 44 59 76)(5 31 54 87 23 25 72 81 17 43 66 75 11 37 60 93)(6 48 55 80 24 42 49 74 18 36 67 92 12 30 61 86)
(1 82 10 91 19 76 4 85 13 94 22 79 7 88 16 73)(2 75 11 84 20 93 5 78 14 87 23 96 8 81 17 90)(3 92 12 77 21 86 6 95 15 80 24 89 9 74 18 83)(25 72 34 57 43 66 28 51 37 60 46 69 31 54 40 63)(26 65 35 50 44 59 29 68 38 53 47 62 32 71 41 56)(27 58 36 67 45 52 30 61 39 70 48 55 33 64 42 49)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,35,50,91,19,29,68,85,13,47,62,79,7,41,56,73)(2,28,51,84,20,46,69,78,14,40,63,96,8,34,57,90)(3,45,52,77,21,39,70,95,15,33,64,89,9,27,58,83)(4,38,53,94,22,32,71,88,16,26,65,82,10,44,59,76)(5,31,54,87,23,25,72,81,17,43,66,75,11,37,60,93)(6,48,55,80,24,42,49,74,18,36,67,92,12,30,61,86), (1,82,10,91,19,76,4,85,13,94,22,79,7,88,16,73)(2,75,11,84,20,93,5,78,14,87,23,96,8,81,17,90)(3,92,12,77,21,86,6,95,15,80,24,89,9,74,18,83)(25,72,34,57,43,66,28,51,37,60,46,69,31,54,40,63)(26,65,35,50,44,59,29,68,38,53,47,62,32,71,41,56)(27,58,36,67,45,52,30,61,39,70,48,55,33,64,42,49)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,35,50,91,19,29,68,85,13,47,62,79,7,41,56,73)(2,28,51,84,20,46,69,78,14,40,63,96,8,34,57,90)(3,45,52,77,21,39,70,95,15,33,64,89,9,27,58,83)(4,38,53,94,22,32,71,88,16,26,65,82,10,44,59,76)(5,31,54,87,23,25,72,81,17,43,66,75,11,37,60,93)(6,48,55,80,24,42,49,74,18,36,67,92,12,30,61,86), (1,82,10,91,19,76,4,85,13,94,22,79,7,88,16,73)(2,75,11,84,20,93,5,78,14,87,23,96,8,81,17,90)(3,92,12,77,21,86,6,95,15,80,24,89,9,74,18,83)(25,72,34,57,43,66,28,51,37,60,46,69,31,54,40,63)(26,65,35,50,44,59,29,68,38,53,47,62,32,71,41,56)(27,58,36,67,45,52,30,61,39,70,48,55,33,64,42,49) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,35,50,91,19,29,68,85,13,47,62,79,7,41,56,73),(2,28,51,84,20,46,69,78,14,40,63,96,8,34,57,90),(3,45,52,77,21,39,70,95,15,33,64,89,9,27,58,83),(4,38,53,94,22,32,71,88,16,26,65,82,10,44,59,76),(5,31,54,87,23,25,72,81,17,43,66,75,11,37,60,93),(6,48,55,80,24,42,49,74,18,36,67,92,12,30,61,86)], [(1,82,10,91,19,76,4,85,13,94,22,79,7,88,16,73),(2,75,11,84,20,93,5,78,14,87,23,96,8,81,17,90),(3,92,12,77,21,86,6,95,15,80,24,89,9,74,18,83),(25,72,34,57,43,66,28,51,37,60,46,69,31,54,40,63),(26,65,35,50,44,59,29,68,38,53,47,62,32,71,41,56),(27,58,36,67,45,52,30,61,39,70,48,55,33,64,42,49)]])

72 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F6A···6G8A···8H8I8J8K8L12A···12H16A···16P24A···24P
order12222234444446···68···8888812···1216···1624···24
size11112221111222···21···122222···26···62···2

72 irreducible representations

dim111111112222222222222
type+++++-+-
imageC1C2C2C4C4C8C8C16S3D4Dic3D6Dic3M4(2)C3:D4C3:C8C3:C8M5(2)C4.Dic3C3:C16C12.C8
kernelC24.98D4C2xC3:C16C22xC24C2xC24C22xC12C2xC12C22xC6C2xC6C22xC8C24C2xC8C2xC8C22xC4C12C8C2xC4C23C6C4C22C2
# reps1212244161211124224488

Matrix representation of C24.98D4 in GL3(F97) generated by

6400
040
0043
,
800
001
0470
,
8900
001
0500
G:=sub<GL(3,GF(97))| [64,0,0,0,4,0,0,0,43],[8,0,0,0,0,47,0,1,0],[89,0,0,0,0,50,0,1,0] >;

C24.98D4 in GAP, Magma, Sage, TeX

C_{24}._{98}D_4
% in TeX

G:=Group("C24.98D4");
// GroupNames label

G:=SmallGroup(192,108);
// by ID

G=gap.SmallGroup(192,108);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,28,141,100,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=1,b^4=a^18,c^2=a^9,b*a*b^-1=c*a*c^-1=a^17,c*b*c^-1=a^15*b^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<