Extensions 1→N→G→Q→1 with N=C4×S4 and Q=C2

Direct product G=N×Q with N=C4×S4 and Q=C2
dρLabelID
C2×C4×S424C2xC4xS4192,1469

Semidirect products G=N:Q with N=C4×S4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×S4)⋊1C2 = D4×S4φ: C2/C1C2 ⊆ Out C4×S4126+(C4xS4):1C2192,1472
(C4×S4)⋊2C2 = D42S4φ: C2/C1C2 ⊆ Out C4×S4246(C4xS4):2C2192,1473
(C4×S4)⋊3C2 = Q84S4φ: C2/C1C2 ⊆ Out C4×S4246(C4xS4):3C2192,1478
(C4×S4)⋊4C2 = C24.10D6φ: C2/C1C2 ⊆ Out C4×S4246(C4xS4):4C2192,1471

Non-split extensions G=N.Q with N=C4×S4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×S4).1C2 = Q8×S4φ: C2/C1C2 ⊆ Out C4×S4246-(C4xS4).1C2192,1477
(C4×S4).2C2 = C8⋊S4φ: C2/C1C2 ⊆ Out C4×S4246(C4xS4).2C2192,959
(C4×S4).3C2 = C8×S4φ: trivial image243(C4xS4).3C2192,958

׿
×
𝔽