non-abelian, soluble, monomial
Aliases: C8⋊3S4, A4⋊1M4(2), A4⋊C4.C4, (C2×S4).C4, A4⋊C8⋊4C2, (C8×A4)⋊5C2, C2.7(C4×S4), (C4×S4).2C2, C4.27(C2×S4), (C22×C8)⋊4S3, C22⋊(C8⋊S3), C23.2(C4×S3), (C22×C4).9D6, (C4×A4).13C22, (C2×A4).2(C2×C4), SmallGroup(192,959)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C8⋊S4
G = < a,b,c,d,e | a8=b2=c2=d3=e2=1, ab=ba, ac=ca, ad=da, eae=a5, dbd-1=ebe=bc=cb, dcd-1=b, ce=ec, ede=d-1 >
Subgroups: 246 in 72 conjugacy classes, 17 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C8, C2×C4, D4, C23, C23, Dic3, C12, A4, D6, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C3⋊C8, C24, C4×S3, S4, C2×A4, C8⋊C4, C22⋊C8, C4⋊C8, C4×D4, C22×C8, C2×M4(2), C8⋊S3, A4⋊C4, C4×A4, C2×S4, C8⋊9D4, A4⋊C8, C8×A4, C4×S4, C8⋊S4
Quotients: C1, C2, C4, C22, S3, C2×C4, D6, M4(2), C4×S3, S4, C8⋊S3, C2×S4, C4×S4, C8⋊S4
Character table of C8⋊S4
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 6 | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 12A | 12B | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 3 | 3 | 12 | 8 | 1 | 1 | 3 | 3 | 12 | 12 | 12 | 8 | 2 | 2 | 6 | 6 | 12 | 12 | 12 | 12 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | i | -i | i | -i | i | -i | i | -i | -1 | -1 | i | -i | i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -i | i | -i | i | i | -i | i | -i | -1 | -1 | -i | i | -i | i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | i | -i | i | -i | -i | i | -i | i | -1 | -1 | i | -i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -i | i | -i | i | -i | i | -i | i | -1 | -1 | -i | i | -i | i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 2 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ12 | 2 | 2 | 2 | 2 | 0 | -1 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | -1 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 1 | 1 | i | -i | i | -i | complex lifted from C4×S3 |
ρ13 | 2 | 2 | 2 | 2 | 0 | -1 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | -1 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 1 | 1 | -i | i | -i | i | complex lifted from C4×S3 |
ρ14 | 2 | -2 | -2 | 2 | 0 | 2 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ15 | 2 | -2 | -2 | 2 | 0 | -1 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -i | i | 2ζ8ζ3+ζ8 | 2ζ83ζ3+ζ83 | 2ζ85ζ3+ζ85 | 2ζ87ζ3+ζ87 | complex lifted from C8⋊S3 |
ρ16 | 2 | -2 | -2 | 2 | 0 | -1 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i | -i | 2ζ87ζ3+ζ87 | 2ζ85ζ3+ζ85 | 2ζ83ζ3+ζ83 | 2ζ8ζ3+ζ8 | complex lifted from C8⋊S3 |
ρ17 | 2 | -2 | -2 | 2 | 0 | -1 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -i | i | 2ζ85ζ3+ζ85 | 2ζ87ζ3+ζ87 | 2ζ8ζ3+ζ8 | 2ζ83ζ3+ζ83 | complex lifted from C8⋊S3 |
ρ18 | 2 | -2 | -2 | 2 | 0 | -1 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i | -i | 2ζ83ζ3+ζ83 | 2ζ8ζ3+ζ8 | 2ζ87ζ3+ζ87 | 2ζ85ζ3+ζ85 | complex lifted from C8⋊S3 |
ρ19 | 3 | 3 | -1 | -1 | -1 | 0 | 3 | 3 | -1 | -1 | 1 | 1 | -1 | 0 | -3 | -3 | 1 | 1 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S4 |
ρ20 | 3 | 3 | -1 | -1 | 1 | 0 | 3 | 3 | -1 | -1 | -1 | -1 | 1 | 0 | -3 | -3 | 1 | 1 | 1 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S4 |
ρ21 | 3 | 3 | -1 | -1 | 1 | 0 | 3 | 3 | -1 | -1 | -1 | -1 | 1 | 0 | 3 | 3 | -1 | -1 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ22 | 3 | 3 | -1 | -1 | -1 | 0 | 3 | 3 | -1 | -1 | 1 | 1 | -1 | 0 | 3 | 3 | -1 | -1 | 1 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ23 | 3 | 3 | -1 | -1 | -1 | 0 | -3 | -3 | 1 | 1 | -1 | 1 | 1 | 0 | -3i | 3i | i | -i | i | -i | -i | i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4×S4 |
ρ24 | 3 | 3 | -1 | -1 | -1 | 0 | -3 | -3 | 1 | 1 | -1 | 1 | 1 | 0 | 3i | -3i | -i | i | -i | i | i | -i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4×S4 |
ρ25 | 3 | 3 | -1 | -1 | 1 | 0 | -3 | -3 | 1 | 1 | 1 | -1 | -1 | 0 | -3i | 3i | i | -i | -i | i | i | -i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4×S4 |
ρ26 | 3 | 3 | -1 | -1 | 1 | 0 | -3 | -3 | 1 | 1 | 1 | -1 | -1 | 0 | 3i | -3i | -i | i | i | -i | -i | i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4×S4 |
ρ27 | 6 | -6 | 2 | -2 | 0 | 0 | -6i | 6i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 6 | -6 | 2 | -2 | 0 | 0 | 6i | -6i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)
(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)
(1 10 19)(2 11 20)(3 12 21)(4 13 22)(5 14 23)(6 15 24)(7 16 17)(8 9 18)
(2 6)(4 8)(9 22)(10 19)(11 24)(12 21)(13 18)(14 23)(15 20)(16 17)
G:=sub<Sym(24)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24), (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,17)(8,9,18), (2,6)(4,8)(9,22)(10,19)(11,24)(12,21)(13,18)(14,23)(15,20)(16,17)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24), (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,17)(8,9,18), (2,6)(4,8)(9,22)(10,19)(11,24)(12,21)(13,18)(14,23)(15,20)(16,17) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16)], [(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24)], [(1,10,19),(2,11,20),(3,12,21),(4,13,22),(5,14,23),(6,15,24),(7,16,17),(8,9,18)], [(2,6),(4,8),(9,22),(10,19),(11,24),(12,21),(13,18),(14,23),(15,20),(16,17)]])
G:=TransitiveGroup(24,323);
Matrix representation of C8⋊S4 ►in GL5(𝔽73)
45 | 13 | 0 | 0 | 0 |
26 | 28 | 0 | 0 | 0 |
0 | 0 | 46 | 0 | 0 |
0 | 0 | 0 | 46 | 0 |
0 | 0 | 0 | 0 | 46 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 72 | 72 | 72 |
0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 72 | 72 | 72 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 72 | 72 | 72 |
0 | 0 | 0 | 0 | 1 |
72 | 54 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(73))| [45,26,0,0,0,13,28,0,0,0,0,0,46,0,0,0,0,0,46,0,0,0,0,0,46],[1,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,72,0,0,0,1,72,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,72,0,0,1,0,72,0,0,0,0,72],[1,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,1,72,0,0,0,0,72,1],[72,0,0,0,0,54,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1] >;
C8⋊S4 in GAP, Magma, Sage, TeX
C_8\rtimes S_4
% in TeX
G:=Group("C8:S4");
// GroupNames label
G:=SmallGroup(192,959);
// by ID
G=gap.SmallGroup(192,959);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-2,2,141,36,58,1124,4037,285,2358,475]);
// Polycyclic
G:=Group<a,b,c,d,e|a^8=b^2=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^5,d*b*d^-1=e*b*e=b*c=c*b,d*c*d^-1=b,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export