Extensions 1→N→G→Q→1 with N=C4.10D4 and Q=S3

Direct product G=N×Q with N=C4.10D4 and Q=S3
dρLabelID
S3×C4.10D4488-S3xC4.10D4192,309

Semidirect products G=N:Q with N=C4.10D4 and Q=S3
extensionφ:Q→Out NdρLabelID
C4.10D41S3 = D12.4D4φ: S3/C3C2 ⊆ Out C4.10D4488-C4.10D4:1S3192,311
C4.10D42S3 = D12.5D4φ: S3/C3C2 ⊆ Out C4.10D4488+C4.10D4:2S3192,312
C4.10D43S3 = D12.6D4φ: S3/C3C2 ⊆ Out C4.10D4488+C4.10D4:3S3192,313
C4.10D44S3 = D12.7D4φ: S3/C3C2 ⊆ Out C4.10D4968-C4.10D4:4S3192,314
C4.10D45S3 = (C2×C4).D12φ: S3/C3C2 ⊆ Out C4.10D4488+C4.10D4:5S3192,36
C4.10D46S3 = M4(2).21D6φ: trivial image488+C4.10D4:6S3192,310

Non-split extensions G=N.Q with N=C4.10D4 and Q=S3
extensionφ:Q→Out NdρLabelID
C4.10D4.S3 = (C2×C12).D4φ: S3/C3C2 ⊆ Out C4.10D4488-C4.10D4.S3192,37

׿
×
𝔽