Copied to
clipboard

G = M4(2).21D6order 192 = 26·3

4th non-split extension by M4(2) of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: M4(2).21D6, (C4xS3).36D4, (C2xD12).4C4, C4.151(S3xD4), C12.96(C2xD4), C4.10D4:6S3, (S3xM4(2)):7C2, (C2xC12).8C23, (C2xQ8).119D6, (C6xQ8).6C22, C12.10D4:4C2, D6.3(C22:C4), C12.46D4:11C2, (C2xD12).40C22, C4.Dic3.5C22, Dic3.17(C22:C4), (C3xM4(2)).21C22, C3:2(M4(2).8C22), (S3xC2xC4).3C4, (C2xC4).7(C4xS3), (C2xC12).7(C2xC4), (S3xC2xC4).4C22, C22.17(S3xC2xC4), C2.16(S3xC22:C4), C6.15(C2xC22:C4), (C2xC4).8(C22xS3), (C22xS3).3(C2xC4), (C2xC6).11(C22xC4), (C2xQ8:3S3).1C2, (C3xC4.10D4):10C2, (C2xDic3).86(C2xC4), SmallGroup(192,310)

Series: Derived Chief Lower central Upper central

C1C2xC6 — M4(2).21D6
C1C3C6C12C2xC12S3xC2xC4C2xQ8:3S3 — M4(2).21D6
C3C6C2xC6 — M4(2).21D6
C1C2C2xC4C4.10D4

Generators and relations for M4(2).21D6
 G = < a,b,c,d | a8=b2=d2=1, c6=a4, bab=a5, cac-1=ab, dad=a5b, bc=cb, bd=db, dcd=a4c5 >

Subgroups: 432 in 150 conjugacy classes, 51 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, C2xC4, D4, Q8, C23, Dic3, C12, C12, D6, D6, C2xC6, C2xC8, M4(2), M4(2), C22xC4, C2xD4, C2xQ8, C4oD4, C3:C8, C24, C4xS3, C4xS3, D12, C2xDic3, C2xC12, C2xC12, C3xQ8, C22xS3, C22xS3, C4.D4, C4.10D4, C4.10D4, C2xM4(2), C2xC4oD4, S3xC8, C8:S3, C4.Dic3, C3xM4(2), S3xC2xC4, S3xC2xC4, C2xD12, C2xD12, Q8:3S3, C6xQ8, M4(2).8C22, C12.46D4, C12.10D4, C3xC4.10D4, S3xM4(2), C2xQ8:3S3, M4(2).21D6
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, D6, C22:C4, C22xC4, C2xD4, C4xS3, C22xS3, C2xC22:C4, S3xC2xC4, S3xD4, M4(2).8C22, S3xC22:C4, M4(2).21D6

Smallest permutation representation of M4(2).21D6
On 48 points
Generators in S48
(1 37 30 23 7 43 36 17)(2 44 25 24 8 38 31 18)(3 39 32 13 9 45 26 19)(4 46 27 14 10 40 33 20)(5 41 34 15 11 47 28 21)(6 48 29 16 12 42 35 22)
(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 6)(2 5)(3 4)(7 12)(8 11)(9 10)(13 20)(14 19)(15 18)(16 17)(21 24)(22 23)(25 28)(26 27)(29 36)(30 35)(31 34)(32 33)(37 48)(38 47)(39 46)(40 45)(41 44)(42 43)

G:=sub<Sym(48)| (1,37,30,23,7,43,36,17)(2,44,25,24,8,38,31,18)(3,39,32,13,9,45,26,19)(4,46,27,14,10,40,33,20)(5,41,34,15,11,47,28,21)(6,48,29,16,12,42,35,22), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10)(13,20)(14,19)(15,18)(16,17)(21,24)(22,23)(25,28)(26,27)(29,36)(30,35)(31,34)(32,33)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43)>;

G:=Group( (1,37,30,23,7,43,36,17)(2,44,25,24,8,38,31,18)(3,39,32,13,9,45,26,19)(4,46,27,14,10,40,33,20)(5,41,34,15,11,47,28,21)(6,48,29,16,12,42,35,22), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10)(13,20)(14,19)(15,18)(16,17)(21,24)(22,23)(25,28)(26,27)(29,36)(30,35)(31,34)(32,33)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43) );

G=PermutationGroup([[(1,37,30,23,7,43,36,17),(2,44,25,24,8,38,31,18),(3,39,32,13,9,45,26,19),(4,46,27,14,10,40,33,20),(5,41,34,15,11,47,28,21),(6,48,29,16,12,42,35,22)], [(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,6),(2,5),(3,4),(7,12),(8,11),(9,10),(13,20),(14,19),(15,18),(16,17),(21,24),(22,23),(25,28),(26,27),(29,36),(30,35),(31,34),(32,33),(37,48),(38,47),(39,46),(40,45),(41,44),(42,43)]])

33 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G6A6B8A8B8C8D8E8F8G8H12A12B12C12D24A24B24C24D
order12222223444444466888888881212121224242424
size112661212222334462444441212121244888888

33 irreducible representations

dim1111111122222448
type++++++++++++
imageC1C2C2C2C2C2C4C4S3D4D6D6C4xS3S3xD4M4(2).8C22M4(2).21D6
kernelM4(2).21D6C12.46D4C12.10D4C3xC4.10D4S3xM4(2)C2xQ8:3S3S3xC2xC4C2xD12C4.10D4C4xS3M4(2)C2xQ8C2xC4C4C3C1
# reps1211214414214221

Matrix representation of M4(2).21D6 in GL6(F73)

100000
010000
0018181871
0051478
0023262770
0026402527
,
100000
010000
001000
00657200
000010
001901872
,
0720000
1720000
0010480
00424603
0030720
007205827
,
1720000
0720000
00720250
003127070
000010
001481546

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,5,23,26,0,0,18,1,26,40,0,0,18,47,27,25,0,0,71,8,70,27],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,65,0,19,0,0,0,72,0,0,0,0,0,0,1,18,0,0,0,0,0,72],[0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,42,3,72,0,0,0,46,0,0,0,0,48,0,72,58,0,0,0,3,0,27],[1,0,0,0,0,0,72,72,0,0,0,0,0,0,72,31,0,1,0,0,0,27,0,48,0,0,25,0,1,15,0,0,0,70,0,46] >;

M4(2).21D6 in GAP, Magma, Sage, TeX

M_4(2)._{21}D_6
% in TeX

G:=Group("M4(2).21D6");
// GroupNames label

G:=SmallGroup(192,310);
// by ID

G=gap.SmallGroup(192,310);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,232,219,58,570,136,438,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=d^2=1,c^6=a^4,b*a*b=a^5,c*a*c^-1=a*b,d*a*d=a^5*b,b*c=c*b,b*d=d*b,d*c*d=a^4*c^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<