Extensions 1→N→G→Q→1 with N=C2 and Q=C2×GL2(𝔽3)

Direct product G=N×Q with N=C2 and Q=C2×GL2(𝔽3)
dρLabelID
C22×GL2(𝔽3)32C2^2xGL(2,3)192,1475


Non-split extensions G=N.Q with N=C2 and Q=C2×GL2(𝔽3)
extensionφ:Q→Aut NdρLabelID
C2.1(C2×GL2(𝔽3)) = C4×GL2(𝔽3)central extension (φ=1)32C2.1(C2xGL(2,3))192,951
C2.2(C2×GL2(𝔽3)) = C2×Q8⋊Dic3central extension (φ=1)64C2.2(C2xGL(2,3))192,977
C2.3(C2×GL2(𝔽3)) = Q8⋊Dic6central stem extension (φ=1)64C2.3(C2xGL(2,3))192,945
C2.4(C2×GL2(𝔽3)) = Q8⋊D12central stem extension (φ=1)32C2.4(C2xGL(2,3))192,952
C2.5(C2×GL2(𝔽3)) = C23.16S4central stem extension (φ=1)32C2.5(C2xGL(2,3))192,980

׿
×
𝔽