Copied to
clipboard

G = C2×Q8⋊Dic3order 192 = 26·3

Direct product of C2 and Q8⋊Dic3

direct product, non-abelian, soluble

Aliases: C2×Q8⋊Dic3, C23.19S4, C22.2GL2(𝔽3), C22.2CSU2(𝔽3), Q8⋊(C2×Dic3), (C2×Q8)⋊1Dic3, (C2×Q8).12D6, C22.17(C2×S4), (C22×Q8).2S3, C22.9(A4⋊C4), SL2(𝔽3)⋊3(C2×C4), (C2×SL2(𝔽3))⋊2C4, C2.2(C2×GL2(𝔽3)), C2.2(C2×CSU2(𝔽3)), (C22×SL2(𝔽3)).2C2, (C2×SL2(𝔽3)).12C22, C2.5(C2×A4⋊C4), SmallGroup(192,977)

Series: Derived Chief Lower central Upper central

C1C2Q8SL2(𝔽3) — C2×Q8⋊Dic3
C1C2Q8SL2(𝔽3)C2×SL2(𝔽3)Q8⋊Dic3 — C2×Q8⋊Dic3
SL2(𝔽3) — C2×Q8⋊Dic3
C1C23

Generators and relations for C2×Q8⋊Dic3
 G = < a,b,c,d,e | a2=b4=d6=1, c2=b2, e2=d3, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ece-1=b-1, dbd-1=c, ebe-1=b2c, dcd-1=bc, ede-1=d-1 >

Subgroups: 323 in 97 conjugacy classes, 29 normal (13 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C8, C2×C4, Q8, Q8, C23, Dic3, C2×C6, C4⋊C4, C2×C8, C22×C4, C2×Q8, C2×Q8, C2×Q8, SL2(𝔽3), C2×Dic3, C22×C6, Q8⋊C4, C2×C4⋊C4, C22×C8, C22×Q8, C2×SL2(𝔽3), C2×SL2(𝔽3), C22×Dic3, C2×Q8⋊C4, Q8⋊Dic3, C22×SL2(𝔽3), C2×Q8⋊Dic3
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, C2×Dic3, S4, CSU2(𝔽3), GL2(𝔽3), A4⋊C4, C2×S4, Q8⋊Dic3, C2×CSU2(𝔽3), C2×GL2(𝔽3), C2×A4⋊C4, C2×Q8⋊Dic3

Smallest permutation representation of C2×Q8⋊Dic3
On 64 points
Generators in S64
(1 10)(2 9)(3 15)(4 16)(5 7)(6 8)(11 13)(12 14)(17 51)(18 52)(19 47)(20 48)(21 49)(22 50)(23 44)(24 45)(25 46)(26 41)(27 42)(28 43)(29 64)(30 59)(31 60)(32 61)(33 62)(34 63)(35 57)(36 58)(37 53)(38 54)(39 55)(40 56)
(1 18 11 24)(2 21 12 27)(3 36 8 33)(4 39 7 30)(5 59 16 55)(6 62 15 58)(9 49 14 42)(10 52 13 45)(17 25 23 19)(20 28 26 22)(29 40 38 31)(32 37 35 34)(41 50 48 43)(44 47 51 46)(53 57 63 61)(54 60 64 56)
(1 20 11 26)(2 17 12 23)(3 38 8 29)(4 35 7 32)(5 61 16 57)(6 64 15 54)(9 51 14 44)(10 48 13 41)(18 22 24 28)(19 27 25 21)(30 34 39 37)(31 36 40 33)(42 46 49 47)(43 52 50 45)(53 59 63 55)(56 62 60 58)
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18 19 20 21 22)(23 24 25 26 27 28)(29 30 31 32 33 34)(35 36 37 38 39 40)(41 42 43 44 45 46)(47 48 49 50 51 52)(53 54 55 56 57 58)(59 60 61 62 63 64)
(1 7 2 8)(3 11 4 12)(5 9 6 10)(13 16 14 15)(17 36 20 39)(18 35 21 38)(19 40 22 37)(23 33 26 30)(24 32 27 29)(25 31 28 34)(41 59 44 62)(42 64 45 61)(43 63 46 60)(47 56 50 53)(48 55 51 58)(49 54 52 57)

G:=sub<Sym(64)| (1,10)(2,9)(3,15)(4,16)(5,7)(6,8)(11,13)(12,14)(17,51)(18,52)(19,47)(20,48)(21,49)(22,50)(23,44)(24,45)(25,46)(26,41)(27,42)(28,43)(29,64)(30,59)(31,60)(32,61)(33,62)(34,63)(35,57)(36,58)(37,53)(38,54)(39,55)(40,56), (1,18,11,24)(2,21,12,27)(3,36,8,33)(4,39,7,30)(5,59,16,55)(6,62,15,58)(9,49,14,42)(10,52,13,45)(17,25,23,19)(20,28,26,22)(29,40,38,31)(32,37,35,34)(41,50,48,43)(44,47,51,46)(53,57,63,61)(54,60,64,56), (1,20,11,26)(2,17,12,23)(3,38,8,29)(4,35,7,32)(5,61,16,57)(6,64,15,54)(9,51,14,44)(10,48,13,41)(18,22,24,28)(19,27,25,21)(30,34,39,37)(31,36,40,33)(42,46,49,47)(43,52,50,45)(53,59,63,55)(56,62,60,58), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20,21,22)(23,24,25,26,27,28)(29,30,31,32,33,34)(35,36,37,38,39,40)(41,42,43,44,45,46)(47,48,49,50,51,52)(53,54,55,56,57,58)(59,60,61,62,63,64), (1,7,2,8)(3,11,4,12)(5,9,6,10)(13,16,14,15)(17,36,20,39)(18,35,21,38)(19,40,22,37)(23,33,26,30)(24,32,27,29)(25,31,28,34)(41,59,44,62)(42,64,45,61)(43,63,46,60)(47,56,50,53)(48,55,51,58)(49,54,52,57)>;

G:=Group( (1,10)(2,9)(3,15)(4,16)(5,7)(6,8)(11,13)(12,14)(17,51)(18,52)(19,47)(20,48)(21,49)(22,50)(23,44)(24,45)(25,46)(26,41)(27,42)(28,43)(29,64)(30,59)(31,60)(32,61)(33,62)(34,63)(35,57)(36,58)(37,53)(38,54)(39,55)(40,56), (1,18,11,24)(2,21,12,27)(3,36,8,33)(4,39,7,30)(5,59,16,55)(6,62,15,58)(9,49,14,42)(10,52,13,45)(17,25,23,19)(20,28,26,22)(29,40,38,31)(32,37,35,34)(41,50,48,43)(44,47,51,46)(53,57,63,61)(54,60,64,56), (1,20,11,26)(2,17,12,23)(3,38,8,29)(4,35,7,32)(5,61,16,57)(6,64,15,54)(9,51,14,44)(10,48,13,41)(18,22,24,28)(19,27,25,21)(30,34,39,37)(31,36,40,33)(42,46,49,47)(43,52,50,45)(53,59,63,55)(56,62,60,58), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20,21,22)(23,24,25,26,27,28)(29,30,31,32,33,34)(35,36,37,38,39,40)(41,42,43,44,45,46)(47,48,49,50,51,52)(53,54,55,56,57,58)(59,60,61,62,63,64), (1,7,2,8)(3,11,4,12)(5,9,6,10)(13,16,14,15)(17,36,20,39)(18,35,21,38)(19,40,22,37)(23,33,26,30)(24,32,27,29)(25,31,28,34)(41,59,44,62)(42,64,45,61)(43,63,46,60)(47,56,50,53)(48,55,51,58)(49,54,52,57) );

G=PermutationGroup([[(1,10),(2,9),(3,15),(4,16),(5,7),(6,8),(11,13),(12,14),(17,51),(18,52),(19,47),(20,48),(21,49),(22,50),(23,44),(24,45),(25,46),(26,41),(27,42),(28,43),(29,64),(30,59),(31,60),(32,61),(33,62),(34,63),(35,57),(36,58),(37,53),(38,54),(39,55),(40,56)], [(1,18,11,24),(2,21,12,27),(3,36,8,33),(4,39,7,30),(5,59,16,55),(6,62,15,58),(9,49,14,42),(10,52,13,45),(17,25,23,19),(20,28,26,22),(29,40,38,31),(32,37,35,34),(41,50,48,43),(44,47,51,46),(53,57,63,61),(54,60,64,56)], [(1,20,11,26),(2,17,12,23),(3,38,8,29),(4,35,7,32),(5,61,16,57),(6,64,15,54),(9,51,14,44),(10,48,13,41),(18,22,24,28),(19,27,25,21),(30,34,39,37),(31,36,40,33),(42,46,49,47),(43,52,50,45),(53,59,63,55),(56,62,60,58)], [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18,19,20,21,22),(23,24,25,26,27,28),(29,30,31,32,33,34),(35,36,37,38,39,40),(41,42,43,44,45,46),(47,48,49,50,51,52),(53,54,55,56,57,58),(59,60,61,62,63,64)], [(1,7,2,8),(3,11,4,12),(5,9,6,10),(13,16,14,15),(17,36,20,39),(18,35,21,38),(19,40,22,37),(23,33,26,30),(24,32,27,29),(25,31,28,34),(41,59,44,62),(42,64,45,61),(43,63,46,60),(47,56,50,53),(48,55,51,58),(49,54,52,57)]])

32 conjugacy classes

class 1 2A···2G 3 4A4B4C4D4E4F4G4H6A···6G8A···8H
order12···23444444446···68···8
size11···186666121212128···86···6

32 irreducible representations

dim11112222233344
type++++-+-++-+
imageC1C2C2C4S3Dic3D6CSU2(𝔽3)GL2(𝔽3)S4A4⋊C4C2×S4CSU2(𝔽3)GL2(𝔽3)
kernelC2×Q8⋊Dic3Q8⋊Dic3C22×SL2(𝔽3)C2×SL2(𝔽3)C22×Q8C2×Q8C2×Q8C22C22C23C22C22C22C22
# reps12141214424222

Matrix representation of C2×Q8⋊Dic3 in GL6(𝔽73)

7200000
0720000
001000
000100
000010
000001
,
100000
010000
001000
000100
00001225
00003861
,
100000
010000
001000
000100
00002635
00006247
,
7210000
7200000
0017200
001000
0000172
000010
,
010000
100000
0002700
0027000
00006859
0000545

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,38,0,0,0,0,25,61],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,26,62,0,0,0,0,35,47],[72,72,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,72,0,0,0,0,0,0,0,1,1,0,0,0,0,72,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,27,0,0,0,0,27,0,0,0,0,0,0,0,68,54,0,0,0,0,59,5] >;

C2×Q8⋊Dic3 in GAP, Magma, Sage, TeX

C_2\times Q_8\rtimes {\rm Dic}_3
% in TeX

G:=Group("C2xQ8:Dic3");
// GroupNames label

G:=SmallGroup(192,977);
// by ID

G=gap.SmallGroup(192,977);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,2,-2,28,451,1684,655,172,1013,404,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=d^6=1,c^2=b^2,e^2=d^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*c*e^-1=b^-1,d*b*d^-1=c,e*b*e^-1=b^2*c,d*c*d^-1=b*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽