Extensions 1→N→G→Q→1 with N=Dic3.Q8 and Q=C2

Direct product G=N×Q with N=Dic3.Q8 and Q=C2
dρLabelID
C2×Dic3.Q8192C2xDic3.Q8192,1057

Semidirect products G=N:Q with N=Dic3.Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
Dic3.Q81C2 = C6.102+ 1+4φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:1C2192,1070
Dic3.Q82C2 = C6.52- 1+4φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:2C2192,1072
Dic3.Q83C2 = C6.62- 1+4φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:3C2192,1074
Dic3.Q84C2 = C42.89D6φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:4C2192,1077
Dic3.Q85C2 = C42.96D6φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:5C2192,1090
Dic3.Q86C2 = C42.104D6φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:6C2192,1099
Dic3.Q87C2 = C42.105D6φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:7C2192,1100
Dic3.Q88C2 = C42.118D6φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:8C2192,1123
Dic3.Q89C2 = C42.132D6φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:9C2192,1140
Dic3.Q810C2 = C42.134D6φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:10C2192,1142
Dic3.Q811C2 = C6.342+ 1+4φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:11C2192,1160
Dic3.Q812C2 = C6.702- 1+4φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:12C2192,1161
Dic3.Q813C2 = C6.442+ 1+4φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:13C2192,1174
Dic3.Q814C2 = C6.492+ 1+4φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:14C2192,1180
Dic3.Q815C2 = (Q8×Dic3)⋊C2φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:15C2192,1181
Dic3.Q816C2 = C6.752- 1+4φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:16C2192,1182
Dic3.Q817C2 = C6.152- 1+4φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:17C2192,1184
Dic3.Q818C2 = C6.1182+ 1+4φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:18C2192,1194
Dic3.Q819C2 = C6.522+ 1+4φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:19C2192,1195
Dic3.Q820C2 = C6.202- 1+4φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:20C2192,1197
Dic3.Q821C2 = C6.212- 1+4φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:21C2192,1198
Dic3.Q822C2 = C6.252- 1+4φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:22C2192,1205
Dic3.Q823C2 = C6.592+ 1+4φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:23C2192,1206
Dic3.Q824C2 = C4⋊C4.197D6φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:24C2192,1208
Dic3.Q825C2 = C6.802- 1+4φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:25C2192,1209
Dic3.Q826C2 = C6.812- 1+4φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:26C2192,1210
Dic3.Q827C2 = C6.632+ 1+4φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:27C2192,1219
Dic3.Q828C2 = C6.642+ 1+4φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:28C2192,1220
Dic3.Q829C2 = C6.662+ 1+4φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:29C2192,1222
Dic3.Q830C2 = C6.852- 1+4φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:30C2192,1224
Dic3.Q831C2 = S3×C42.C2φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:31C2192,1246
Dic3.Q832C2 = C42.148D6φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:32C2192,1248
Dic3.Q833C2 = C42.150D6φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:33C2192,1251
Dic3.Q834C2 = C42.151D6φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:34C2192,1252
Dic3.Q835C2 = C42.154D6φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:35C2192,1255
Dic3.Q836C2 = C42.159D6φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:36C2192,1260
Dic3.Q837C2 = C42.189D6φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:37C2192,1265
Dic3.Q838C2 = C42.162D6φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:38C2192,1267
Dic3.Q839C2 = C42.163D6φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:39C2192,1268
Dic3.Q840C2 = C42.165D6φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:40C2192,1271
Dic3.Q841C2 = C42.174D6φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:41C2192,1288
Dic3.Q842C2 = C42.176D6φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:42C2192,1290
Dic3.Q843C2 = C42.180D6φ: C2/C1C2 ⊆ Out Dic3.Q896Dic3.Q8:43C2192,1294
Dic3.Q844C2 = C42.93D6φ: trivial image96Dic3.Q8:44C2192,1087
Dic3.Q845C2 = C42.102D6φ: trivial image96Dic3.Q8:45C2192,1097
Dic3.Q846C2 = C42.232D6φ: trivial image96Dic3.Q8:46C2192,1137

Non-split extensions G=N.Q with N=Dic3.Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
Dic3.Q8.1C2 = Dic610Q8φ: C2/C1C2 ⊆ Out Dic3.Q8192Dic3.Q8.1C2192,1126
Dic3.Q8.2C2 = Dic67Q8φ: C2/C1C2 ⊆ Out Dic3.Q8192Dic3.Q8.2C2192,1244
Dic3.Q8.3C2 = C42.147D6φ: C2/C1C2 ⊆ Out Dic3.Q8192Dic3.Q8.3C2192,1245
Dic3.Q8.4C2 = Dic68Q8φ: C2/C1C2 ⊆ Out Dic3.Q8192Dic3.Q8.4C2192,1280

׿
×
𝔽