Copied to
clipboard

G = C4:C4.197D6order 192 = 26·3

70th non-split extension by C4:C4 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4:C4.197D6, (D4xDic3):27C2, (C2xD4).159D6, C22:C4.66D6, Dic3.Q8:24C2, (C2xC12).67C23, (C2xC6).193C24, D6:C4.31C22, (C22xC4).337D6, Dic3:4D4:17C2, Dic6:C4:30C2, Dic3.8(C4oD4), C23.14D6.1C2, (C6xD4).131C22, C22.D4:17S3, C23.8D6:27C2, (C22xC6).29C23, C23.34(C22xS3), C23.11D6:30C2, Dic3.D4:28C2, C23.16D6:11C2, C23.28D6:19C2, Dic3:C4.38C22, (C22xS3).84C23, C4:Dic3.224C22, C22.214(S3xC23), (C2xDic3).98C23, C22.11(D4:2S3), (C22xC12).367C22, C3:8(C23.36C23), (C4xDic3).120C22, (C2xDic6).166C22, C6.D4.39C22, (C22xDic3).226C22, C4:C4:S3:26C2, C4:C4:7S3:31C2, (C2xC4xDic3):36C2, C2.57(S3xC4oD4), C6.169(C2xC4oD4), (C2xC6).45(C4oD4), C2.51(C2xD4:2S3), (S3xC2xC4).109C22, (C2xC4).58(C22xS3), (C3xC4:C4).173C22, (C3xC22.D4):3C2, (C2xC3:D4).45C22, (C3xC22:C4).48C22, SmallGroup(192,1208)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C4:C4.197D6
C1C3C6C2xC6C2xDic3C22xDic3C2xC4xDic3 — C4:C4.197D6
C3C2xC6 — C4:C4.197D6
C1C22C22.D4

Generators and relations for C4:C4.197D6
 G = < a,b,c,d | a4=b4=c6=1, d2=a2, bab-1=a-1, cac-1=dad-1=ab2, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 528 in 234 conjugacy classes, 99 normal (91 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, Q8, C23, C23, Dic3, Dic3, C12, D6, C2xC6, C2xC6, C2xC6, C42, C22:C4, C22:C4, C4:C4, C4:C4, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, Dic6, C4xS3, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C22xS3, C22xC6, C2xC42, C42:C2, C4xD4, C4xQ8, C4:D4, C22:Q8, C22.D4, C22.D4, C4.4D4, C42.C2, C42:2C2, C4xDic3, Dic3:C4, C4:Dic3, D6:C4, C6.D4, C3xC22:C4, C3xC4:C4, C2xDic6, S3xC2xC4, C22xDic3, C2xC3:D4, C22xC12, C6xD4, C23.36C23, C23.16D6, Dic3.D4, C23.8D6, Dic3:4D4, C23.11D6, Dic6:C4, Dic3.Q8, C4:C4:7S3, C4:C4:S3, C2xC4xDic3, C23.28D6, D4xDic3, C23.14D6, C3xC22.D4, C4:C4.197D6
Quotients: C1, C2, C22, S3, C23, D6, C4oD4, C24, C22xS3, C2xC4oD4, D4:2S3, S3xC23, C23.36C23, C2xD4:2S3, S3xC4oD4, C4:C4.197D6

Smallest permutation representation of C4:C4.197D6
On 96 points
Generators in S96
(1 10 73 54)(2 29 74 95)(3 12 75 50)(4 25 76 91)(5 8 77 52)(6 27 78 93)(7 32 51 60)(9 34 53 56)(11 36 49 58)(13 72 79 44)(14 23 80 89)(15 68 81 46)(16 19 82 85)(17 70 83 48)(18 21 84 87)(20 39 86 61)(22 41 88 63)(24 37 90 65)(26 33 92 55)(28 35 94 57)(30 31 96 59)(38 47 66 69)(40 43 62 71)(42 45 64 67)
(1 69 57 19)(2 70 58 20)(3 71 59 21)(4 72 60 22)(5 67 55 23)(6 68 56 24)(7 63 25 13)(8 64 26 14)(9 65 27 15)(10 66 28 16)(11 61 29 17)(12 62 30 18)(31 87 75 43)(32 88 76 44)(33 89 77 45)(34 90 78 46)(35 85 73 47)(36 86 74 48)(37 93 81 53)(38 94 82 54)(39 95 83 49)(40 96 84 50)(41 91 79 51)(42 92 80 52)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 27 73 93)(2 26 74 92)(3 25 75 91)(4 30 76 96)(5 29 77 95)(6 28 78 94)(7 31 51 59)(8 36 52 58)(9 35 53 57)(10 34 54 56)(11 33 49 55)(12 32 50 60)(13 43 79 71)(14 48 80 70)(15 47 81 69)(16 46 82 68)(17 45 83 67)(18 44 84 72)(19 65 85 37)(20 64 86 42)(21 63 87 41)(22 62 88 40)(23 61 89 39)(24 66 90 38)

G:=sub<Sym(96)| (1,10,73,54)(2,29,74,95)(3,12,75,50)(4,25,76,91)(5,8,77,52)(6,27,78,93)(7,32,51,60)(9,34,53,56)(11,36,49,58)(13,72,79,44)(14,23,80,89)(15,68,81,46)(16,19,82,85)(17,70,83,48)(18,21,84,87)(20,39,86,61)(22,41,88,63)(24,37,90,65)(26,33,92,55)(28,35,94,57)(30,31,96,59)(38,47,66,69)(40,43,62,71)(42,45,64,67), (1,69,57,19)(2,70,58,20)(3,71,59,21)(4,72,60,22)(5,67,55,23)(6,68,56,24)(7,63,25,13)(8,64,26,14)(9,65,27,15)(10,66,28,16)(11,61,29,17)(12,62,30,18)(31,87,75,43)(32,88,76,44)(33,89,77,45)(34,90,78,46)(35,85,73,47)(36,86,74,48)(37,93,81,53)(38,94,82,54)(39,95,83,49)(40,96,84,50)(41,91,79,51)(42,92,80,52), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,27,73,93)(2,26,74,92)(3,25,75,91)(4,30,76,96)(5,29,77,95)(6,28,78,94)(7,31,51,59)(8,36,52,58)(9,35,53,57)(10,34,54,56)(11,33,49,55)(12,32,50,60)(13,43,79,71)(14,48,80,70)(15,47,81,69)(16,46,82,68)(17,45,83,67)(18,44,84,72)(19,65,85,37)(20,64,86,42)(21,63,87,41)(22,62,88,40)(23,61,89,39)(24,66,90,38)>;

G:=Group( (1,10,73,54)(2,29,74,95)(3,12,75,50)(4,25,76,91)(5,8,77,52)(6,27,78,93)(7,32,51,60)(9,34,53,56)(11,36,49,58)(13,72,79,44)(14,23,80,89)(15,68,81,46)(16,19,82,85)(17,70,83,48)(18,21,84,87)(20,39,86,61)(22,41,88,63)(24,37,90,65)(26,33,92,55)(28,35,94,57)(30,31,96,59)(38,47,66,69)(40,43,62,71)(42,45,64,67), (1,69,57,19)(2,70,58,20)(3,71,59,21)(4,72,60,22)(5,67,55,23)(6,68,56,24)(7,63,25,13)(8,64,26,14)(9,65,27,15)(10,66,28,16)(11,61,29,17)(12,62,30,18)(31,87,75,43)(32,88,76,44)(33,89,77,45)(34,90,78,46)(35,85,73,47)(36,86,74,48)(37,93,81,53)(38,94,82,54)(39,95,83,49)(40,96,84,50)(41,91,79,51)(42,92,80,52), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,27,73,93)(2,26,74,92)(3,25,75,91)(4,30,76,96)(5,29,77,95)(6,28,78,94)(7,31,51,59)(8,36,52,58)(9,35,53,57)(10,34,54,56)(11,33,49,55)(12,32,50,60)(13,43,79,71)(14,48,80,70)(15,47,81,69)(16,46,82,68)(17,45,83,67)(18,44,84,72)(19,65,85,37)(20,64,86,42)(21,63,87,41)(22,62,88,40)(23,61,89,39)(24,66,90,38) );

G=PermutationGroup([[(1,10,73,54),(2,29,74,95),(3,12,75,50),(4,25,76,91),(5,8,77,52),(6,27,78,93),(7,32,51,60),(9,34,53,56),(11,36,49,58),(13,72,79,44),(14,23,80,89),(15,68,81,46),(16,19,82,85),(17,70,83,48),(18,21,84,87),(20,39,86,61),(22,41,88,63),(24,37,90,65),(26,33,92,55),(28,35,94,57),(30,31,96,59),(38,47,66,69),(40,43,62,71),(42,45,64,67)], [(1,69,57,19),(2,70,58,20),(3,71,59,21),(4,72,60,22),(5,67,55,23),(6,68,56,24),(7,63,25,13),(8,64,26,14),(9,65,27,15),(10,66,28,16),(11,61,29,17),(12,62,30,18),(31,87,75,43),(32,88,76,44),(33,89,77,45),(34,90,78,46),(35,85,73,47),(36,86,74,48),(37,93,81,53),(38,94,82,54),(39,95,83,49),(40,96,84,50),(41,91,79,51),(42,92,80,52)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,27,73,93),(2,26,74,92),(3,25,75,91),(4,30,76,96),(5,29,77,95),(6,28,78,94),(7,31,51,59),(8,36,52,58),(9,35,53,57),(10,34,54,56),(11,33,49,55),(12,32,50,60),(13,43,79,71),(14,48,80,70),(15,47,81,69),(16,46,82,68),(17,45,83,67),(18,44,84,72),(19,65,85,37),(20,64,86,42),(21,63,87,41),(22,62,88,40),(23,61,89,39),(24,66,90,38)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H4I4J4K4L···4Q4R4S4T6A6B6C6D6E6F12A12B12C12D12E12F12G
order122222223444444444444···444466666612121212121212
size1111224122222233334446···61212122224484444888

42 irreducible representations

dim111111111111111222222244
type++++++++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2S3D6D6D6D6C4oD4C4oD4D4:2S3S3xC4oD4
kernelC4:C4.197D6C23.16D6Dic3.D4C23.8D6Dic3:4D4C23.11D6Dic6:C4Dic3.Q8C4:C4:7S3C4:C4:S3C2xC4xDic3C23.28D6D4xDic3C23.14D6C3xC22.D4C22.D4C22:C4C4:C4C22xC4C2xD4Dic3C2xC6C22C2
# reps111121111111111132118424

Matrix representation of C4:C4.197D6 in GL6(F13)

800000
350000
0012000
0001200
000050
000008
,
940000
1240000
001000
000100
000005
000080
,
760000
560000
000100
0012100
0000120
0000012
,
940000
1240000
0011200
0001200
000050
000005

G:=sub<GL(6,GF(13))| [8,3,0,0,0,0,0,5,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,5,0,0,0,0,0,0,8],[9,12,0,0,0,0,4,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,8,0,0,0,0,5,0],[7,5,0,0,0,0,6,6,0,0,0,0,0,0,0,12,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[9,12,0,0,0,0,4,4,0,0,0,0,0,0,1,0,0,0,0,0,12,12,0,0,0,0,0,0,5,0,0,0,0,0,0,5] >;

C4:C4.197D6 in GAP, Magma, Sage, TeX

C_4\rtimes C_4._{197}D_6
% in TeX

G:=Group("C4:C4.197D6");
// GroupNames label

G:=SmallGroup(192,1208);
// by ID

G=gap.SmallGroup(192,1208);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,100,346,297,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=1,d^2=a^2,b*a*b^-1=a^-1,c*a*c^-1=d*a*d^-1=a*b^2,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<