Copied to
clipboard

G = C2xQ8xA4order 192 = 26·3

Direct product of C2, Q8 and A4

direct product, metabelian, soluble, monomial

Aliases: C2xQ8xA4, C22:(C6xQ8), C23:3(C3xQ8), (Q8xC23):2C3, C4.7(C22xA4), (C23xC4).3C6, C2.4(C23xA4), (C22xQ8):6C6, C24.27(C2xC6), (C4xA4).20C22, (C2xA4).13C23, C23.30(C22xC6), C22.19(C22xA4), (C22xA4).17C22, (C2xC4xA4).9C2, (C2xC4).11(C2xA4), (C22xC4).4(C2xC6), SmallGroup(192,1499)

Series: Derived Chief Lower central Upper central

C1C23 — C2xQ8xA4
C1C22C23C2xA4C22xA4C2xC4xA4 — C2xQ8xA4
C22C23 — C2xQ8xA4
C1C22C2xQ8

Generators and relations for C2xQ8xA4
 G = < a,b,c,d,e,f | a2=b4=d2=e2=f3=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc-1=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, fdf-1=de=ed, fef-1=d >

Subgroups: 520 in 205 conjugacy classes, 57 normal (12 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C6, C2xC4, C2xC4, Q8, Q8, C23, C23, C23, C12, A4, C2xC6, C22xC4, C22xC4, C2xQ8, C2xQ8, C24, C2xC12, C3xQ8, C2xA4, C2xA4, C23xC4, C22xQ8, C22xQ8, C4xA4, C6xQ8, C22xA4, Q8xC23, C2xC4xA4, Q8xA4, C2xQ8xA4
Quotients: C1, C2, C3, C22, C6, Q8, C23, A4, C2xC6, C2xQ8, C3xQ8, C2xA4, C22xC6, C6xQ8, C22xA4, Q8xA4, C23xA4, C2xQ8xA4

Smallest permutation representation of C2xQ8xA4
On 48 points
Generators in S48
(1 11)(2 12)(3 9)(4 10)(5 25)(6 26)(7 27)(8 28)(13 37)(14 38)(15 39)(16 40)(17 21)(18 22)(19 23)(20 24)(29 35)(30 36)(31 33)(32 34)(41 47)(42 48)(43 45)(44 46)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 31 3 29)(2 30 4 32)(5 38 7 40)(6 37 8 39)(9 35 11 33)(10 34 12 36)(13 28 15 26)(14 27 16 25)(17 43 19 41)(18 42 20 44)(21 45 23 47)(22 48 24 46)
(5 25)(6 26)(7 27)(8 28)(13 37)(14 38)(15 39)(16 40)(17 21)(18 22)(19 23)(20 24)(41 47)(42 48)(43 45)(44 46)
(1 11)(2 12)(3 9)(4 10)(17 21)(18 22)(19 23)(20 24)(29 35)(30 36)(31 33)(32 34)(41 47)(42 48)(43 45)(44 46)
(1 5 19)(2 6 20)(3 7 17)(4 8 18)(9 27 21)(10 28 22)(11 25 23)(12 26 24)(13 46 36)(14 47 33)(15 48 34)(16 45 35)(29 40 43)(30 37 44)(31 38 41)(32 39 42)

G:=sub<Sym(48)| (1,11)(2,12)(3,9)(4,10)(5,25)(6,26)(7,27)(8,28)(13,37)(14,38)(15,39)(16,40)(17,21)(18,22)(19,23)(20,24)(29,35)(30,36)(31,33)(32,34)(41,47)(42,48)(43,45)(44,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,31,3,29)(2,30,4,32)(5,38,7,40)(6,37,8,39)(9,35,11,33)(10,34,12,36)(13,28,15,26)(14,27,16,25)(17,43,19,41)(18,42,20,44)(21,45,23,47)(22,48,24,46), (5,25)(6,26)(7,27)(8,28)(13,37)(14,38)(15,39)(16,40)(17,21)(18,22)(19,23)(20,24)(41,47)(42,48)(43,45)(44,46), (1,11)(2,12)(3,9)(4,10)(17,21)(18,22)(19,23)(20,24)(29,35)(30,36)(31,33)(32,34)(41,47)(42,48)(43,45)(44,46), (1,5,19)(2,6,20)(3,7,17)(4,8,18)(9,27,21)(10,28,22)(11,25,23)(12,26,24)(13,46,36)(14,47,33)(15,48,34)(16,45,35)(29,40,43)(30,37,44)(31,38,41)(32,39,42)>;

G:=Group( (1,11)(2,12)(3,9)(4,10)(5,25)(6,26)(7,27)(8,28)(13,37)(14,38)(15,39)(16,40)(17,21)(18,22)(19,23)(20,24)(29,35)(30,36)(31,33)(32,34)(41,47)(42,48)(43,45)(44,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,31,3,29)(2,30,4,32)(5,38,7,40)(6,37,8,39)(9,35,11,33)(10,34,12,36)(13,28,15,26)(14,27,16,25)(17,43,19,41)(18,42,20,44)(21,45,23,47)(22,48,24,46), (5,25)(6,26)(7,27)(8,28)(13,37)(14,38)(15,39)(16,40)(17,21)(18,22)(19,23)(20,24)(41,47)(42,48)(43,45)(44,46), (1,11)(2,12)(3,9)(4,10)(17,21)(18,22)(19,23)(20,24)(29,35)(30,36)(31,33)(32,34)(41,47)(42,48)(43,45)(44,46), (1,5,19)(2,6,20)(3,7,17)(4,8,18)(9,27,21)(10,28,22)(11,25,23)(12,26,24)(13,46,36)(14,47,33)(15,48,34)(16,45,35)(29,40,43)(30,37,44)(31,38,41)(32,39,42) );

G=PermutationGroup([[(1,11),(2,12),(3,9),(4,10),(5,25),(6,26),(7,27),(8,28),(13,37),(14,38),(15,39),(16,40),(17,21),(18,22),(19,23),(20,24),(29,35),(30,36),(31,33),(32,34),(41,47),(42,48),(43,45),(44,46)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,31,3,29),(2,30,4,32),(5,38,7,40),(6,37,8,39),(9,35,11,33),(10,34,12,36),(13,28,15,26),(14,27,16,25),(17,43,19,41),(18,42,20,44),(21,45,23,47),(22,48,24,46)], [(5,25),(6,26),(7,27),(8,28),(13,37),(14,38),(15,39),(16,40),(17,21),(18,22),(19,23),(20,24),(41,47),(42,48),(43,45),(44,46)], [(1,11),(2,12),(3,9),(4,10),(17,21),(18,22),(19,23),(20,24),(29,35),(30,36),(31,33),(32,34),(41,47),(42,48),(43,45),(44,46)], [(1,5,19),(2,6,20),(3,7,17),(4,8,18),(9,27,21),(10,28,22),(11,25,23),(12,26,24),(13,46,36),(14,47,33),(15,48,34),(16,45,35),(29,40,43),(30,37,44),(31,38,41),(32,39,42)]])

40 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A···4F4G···4L6A···6F12A···12L
order12222222334···44···46···612···12
size11113333442···26···64···48···8

40 irreducible representations

dim111111223336
type+++-+++-
imageC1C2C2C3C6C6Q8C3xQ8A4C2xA4C2xA4Q8xA4
kernelC2xQ8xA4C2xC4xA4Q8xA4Q8xC23C23xC4C22xQ8C2xA4C23C2xQ8C2xC4Q8C2
# reps134268241342

Matrix representation of C2xQ8xA4 in GL5(F13)

120000
012000
001200
000120
000012
,
111000
112000
00100
00010
00001
,
50000
58000
001200
000120
000012
,
10000
01000
00100
000120
000012
,
10000
01000
001200
000120
00001
,
90000
09000
00010
00001
00100

G:=sub<GL(5,GF(13))| [12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[1,1,0,0,0,11,12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[5,5,0,0,0,0,8,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,1],[9,0,0,0,0,0,9,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0] >;

C2xQ8xA4 in GAP, Magma, Sage, TeX

C_2\times Q_8\times A_4
% in TeX

G:=Group("C2xQ8xA4");
// GroupNames label

G:=SmallGroup(192,1499);
// by ID

G=gap.SmallGroup(192,1499);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,2,176,303,142,530,909]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^4=d^2=e^2=f^3=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<