Copied to
clipboard

G = C4○D4⋊A4order 192 = 26·3

1st semidirect product of C4○D4 and A4 acting via A4/C22=C3

non-abelian, soluble

Aliases: C4○D41A4, C22⋊(C4.A4), Q8.1(C2×A4), Q8⋊A43C2, (C22×C4).9A4, C4.1(C22⋊A4), C23.23(C2×A4), (C22×Q8).7C6, (C22×C4○D4)⋊3C3, C2.3(C2×C22⋊A4), SmallGroup(192,1507)

Series: Derived Chief Lower central Upper central

C1C2C22×Q8 — C4○D4⋊A4
C1C2Q8C22×Q8Q8⋊A4 — C4○D4⋊A4
C22×Q8 — C4○D4⋊A4
C1C4

Generators and relations for C4○D4⋊A4
 G = < a,b,c,d,e,f | a4=c2=d2=e2=f3=1, b2=a2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=a2b, bd=db, be=eb, fbf-1=a-1bc, cd=dc, ce=ec, fcf-1=a-1b, fdf-1=de=ed, fef-1=d >

Subgroups: 599 in 175 conjugacy classes, 18 normal (10 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C2×C4, D4, Q8, Q8, C23, C23, C12, A4, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C4○D4, C24, SL2(𝔽3), C2×A4, C23×C4, C22×D4, C22×Q8, C2×C4○D4, C4×A4, C4.A4, C22×C4○D4, Q8⋊A4, C4○D4⋊A4
Quotients: C1, C2, C3, C6, A4, C2×A4, C4.A4, C22⋊A4, C2×C22⋊A4, C4○D4⋊A4

Character table of C4○D4⋊A4

 class 12A2B2C2D2E2F2G3A3B4A4B4C4D4E4F4G4H6A6B12A12B12C12D
 size 11336666161611336666161616161616
ρ1111111111111111111111111    trivial
ρ21111-1-1-1-111-1-1-1-1111111-1-1-1-1    linear of order 2
ρ311111111ζ3ζ3211111111ζ3ζ32ζ32ζ3ζ32ζ3    linear of order 3
ρ41111-1-1-1-1ζ32ζ3-1-1-1-11111ζ32ζ3ζ65ζ6ζ65ζ6    linear of order 6
ρ51111-1-1-1-1ζ3ζ32-1-1-1-11111ζ3ζ32ζ6ζ65ζ6ζ65    linear of order 6
ρ611111111ζ32ζ311111111ζ32ζ3ζ3ζ32ζ3ζ32    linear of order 3
ρ72-22-20000-1-1-2i2i2i-2i000011-i-iii    complex lifted from C4.A4
ρ82-22-20000-1-12i-2i-2i2i000011ii-i-i    complex lifted from C4.A4
ρ92-22-20000ζ6ζ65-2i2i2i-2i0000ζ32ζ3ζ43ζ3ζ43ζ32ζ4ζ3ζ4ζ32    complex lifted from C4.A4
ρ102-22-20000ζ65ζ6-2i2i2i-2i0000ζ3ζ32ζ43ζ32ζ43ζ3ζ4ζ32ζ4ζ3    complex lifted from C4.A4
ρ112-22-20000ζ65ζ62i-2i-2i2i0000ζ3ζ32ζ4ζ32ζ4ζ3ζ43ζ32ζ43ζ3    complex lifted from C4.A4
ρ122-22-20000ζ6ζ652i-2i-2i2i0000ζ32ζ3ζ4ζ3ζ4ζ32ζ43ζ3ζ43ζ32    complex lifted from C4.A4
ρ1333-1-111-3100-3-311-1-1-13000000    orthogonal lifted from C2×A4
ρ143333-1-1-1-1003333-1-1-1-1000000    orthogonal lifted from A4
ρ1533-1-1-13-1-10033-1-1-1-13-1000000    orthogonal lifted from A4
ρ1633-1-1-311100-3-311-13-1-1000000    orthogonal lifted from C2×A4
ρ1733-1-1111-300-3-3113-1-1-1000000    orthogonal lifted from C2×A4
ρ1833-1-11-31100-3-311-1-13-1000000    orthogonal lifted from C2×A4
ρ1933-1-1-1-1-130033-1-13-1-1-1000000    orthogonal lifted from A4
ρ2033-1-13-1-1-10033-1-1-13-1-1000000    orthogonal lifted from A4
ρ2133-1-1-1-13-10033-1-1-1-1-13000000    orthogonal lifted from A4
ρ223333111100-3-3-3-3-1-1-1-1000000    orthogonal lifted from C2×A4
ρ236-6-220000006i-6i2i-2i0000000000    complex faithful
ρ246-6-22000000-6i6i-2i2i0000000000    complex faithful

Permutation representations of C4○D4⋊A4
On 24 points - transitive group 24T302
Generators in S24
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 10 3 12)(2 11 4 9)(5 8 7 6)(13 18 15 20)(14 19 16 17)(21 22 23 24)
(1 12)(2 9)(3 10)(4 11)(5 21)(6 22)(7 23)(8 24)(17 19)(18 20)
(1 3)(2 4)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(21 23)(22 24)
(1 24 16)(2 21 13)(3 22 14)(4 23 15)(5 18 10)(6 19 11)(7 20 12)(8 17 9)

G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,10,3,12)(2,11,4,9)(5,8,7,6)(13,18,15,20)(14,19,16,17)(21,22,23,24), (1,12)(2,9)(3,10)(4,11)(5,21)(6,22)(7,23)(8,24)(17,19)(18,20), (1,3)(2,4)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(21,23)(22,24), (1,24,16)(2,21,13)(3,22,14)(4,23,15)(5,18,10)(6,19,11)(7,20,12)(8,17,9)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,10,3,12)(2,11,4,9)(5,8,7,6)(13,18,15,20)(14,19,16,17)(21,22,23,24), (1,12)(2,9)(3,10)(4,11)(5,21)(6,22)(7,23)(8,24)(17,19)(18,20), (1,3)(2,4)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(21,23)(22,24), (1,24,16)(2,21,13)(3,22,14)(4,23,15)(5,18,10)(6,19,11)(7,20,12)(8,17,9) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,10,3,12),(2,11,4,9),(5,8,7,6),(13,18,15,20),(14,19,16,17),(21,22,23,24)], [(1,12),(2,9),(3,10),(4,11),(5,21),(6,22),(7,23),(8,24),(17,19),(18,20)], [(1,3),(2,4),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(21,23),(22,24)], [(1,24,16),(2,21,13),(3,22,14),(4,23,15),(5,18,10),(6,19,11),(7,20,12),(8,17,9)]])

G:=TransitiveGroup(24,302);

Matrix representation of C4○D4⋊A4 in GL5(𝔽13)

50000
05000
001200
000120
000012
,
43000
39000
000112
001012
000012
,
117000
72000
00100
001012
001120
,
10000
01000
001200
001201
001210
,
10000
01000
000121
000120
001120
,
10000
39000
00001
00100
00010

G:=sub<GL(5,GF(13))| [5,0,0,0,0,0,5,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[4,3,0,0,0,3,9,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,12,12,12],[11,7,0,0,0,7,2,0,0,0,0,0,1,1,1,0,0,0,0,12,0,0,0,12,0],[1,0,0,0,0,0,1,0,0,0,0,0,12,12,12,0,0,0,0,1,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,12,12,12,0,0,1,0,0],[1,3,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0] >;

C4○D4⋊A4 in GAP, Magma, Sage, TeX

C_4\circ D_4\rtimes A_4
% in TeX

G:=Group("C4oD4:A4");
// GroupNames label

G:=SmallGroup(192,1507);
// by ID

G=gap.SmallGroup(192,1507);
# by ID

G:=PCGroup([7,-2,-3,-2,2,-2,2,-2,672,135,262,851,172,1524,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^4=c^2=d^2=e^2=f^3=1,b^2=a^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=a^2*b,b*d=d*b,b*e=e*b,f*b*f^-1=a^-1*b*c,c*d=d*c,c*e=e*c,f*c*f^-1=a^-1*b,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

Export

Character table of C4○D4⋊A4 in TeX

׿
×
𝔽