Aliases: C4○D4⋊1A4, C22⋊(C4.A4), Q8.1(C2×A4), Q8⋊A4⋊3C2, (C22×C4).9A4, C4.1(C22⋊A4), C23.23(C2×A4), (C22×Q8).7C6, (C22×C4○D4)⋊3C3, C2.3(C2×C22⋊A4), SmallGroup(192,1507)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — Q8 — C22×Q8 — Q8⋊A4 — C4○D4⋊A4 |
C22×Q8 — C4○D4⋊A4 |
Generators and relations for C4○D4⋊A4
G = < a,b,c,d,e,f | a4=c2=d2=e2=f3=1, b2=a2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=a2b, bd=db, be=eb, fbf-1=a-1bc, cd=dc, ce=ec, fcf-1=a-1b, fdf-1=de=ed, fef-1=d >
Subgroups: 599 in 175 conjugacy classes, 18 normal (10 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C2×C4, D4, Q8, Q8, C23, C23, C12, A4, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C4○D4, C24, SL2(𝔽3), C2×A4, C23×C4, C22×D4, C22×Q8, C2×C4○D4, C4×A4, C4.A4, C22×C4○D4, Q8⋊A4, C4○D4⋊A4
Quotients: C1, C2, C3, C6, A4, C2×A4, C4.A4, C22⋊A4, C2×C22⋊A4, C4○D4⋊A4
Character table of C4○D4⋊A4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | 6B | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 3 | 3 | 6 | 6 | 6 | 6 | 16 | 16 | 1 | 1 | 3 | 3 | 6 | 6 | 6 | 6 | 16 | 16 | 16 | 16 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 3 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | ζ32 | ζ3 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ65 | ζ6 | ζ65 | ζ6 | linear of order 6 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | ζ3 | ζ32 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ6 | ζ65 | ζ6 | ζ65 | linear of order 6 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 3 |
ρ7 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 1 | 1 | -i | -i | i | i | complex lifted from C4.A4 |
ρ8 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 1 | 1 | i | i | -i | -i | complex lifted from C4.A4 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | ζ32 | ζ3 | ζ43ζ3 | ζ43ζ32 | ζ4ζ3 | ζ4ζ32 | complex lifted from C4.A4 |
ρ10 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | ζ3 | ζ32 | ζ43ζ32 | ζ43ζ3 | ζ4ζ32 | ζ4ζ3 | complex lifted from C4.A4 |
ρ11 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | ζ3 | ζ32 | ζ4ζ32 | ζ4ζ3 | ζ43ζ32 | ζ43ζ3 | complex lifted from C4.A4 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | ζ32 | ζ3 | ζ4ζ3 | ζ4ζ32 | ζ43ζ3 | ζ43ζ32 | complex lifted from C4.A4 |
ρ13 | 3 | 3 | -1 | -1 | 1 | 1 | -3 | 1 | 0 | 0 | -3 | -3 | 1 | 1 | -1 | -1 | -1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ14 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 0 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ15 | 3 | 3 | -1 | -1 | -1 | 3 | -1 | -1 | 0 | 0 | 3 | 3 | -1 | -1 | -1 | -1 | 3 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ16 | 3 | 3 | -1 | -1 | -3 | 1 | 1 | 1 | 0 | 0 | -3 | -3 | 1 | 1 | -1 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ17 | 3 | 3 | -1 | -1 | 1 | 1 | 1 | -3 | 0 | 0 | -3 | -3 | 1 | 1 | 3 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ18 | 3 | 3 | -1 | -1 | 1 | -3 | 1 | 1 | 0 | 0 | -3 | -3 | 1 | 1 | -1 | -1 | 3 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ19 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | 3 | 0 | 0 | 3 | 3 | -1 | -1 | 3 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ20 | 3 | 3 | -1 | -1 | 3 | -1 | -1 | -1 | 0 | 0 | 3 | 3 | -1 | -1 | -1 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ21 | 3 | 3 | -1 | -1 | -1 | -1 | 3 | -1 | 0 | 0 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ22 | 3 | 3 | 3 | 3 | 1 | 1 | 1 | 1 | 0 | 0 | -3 | -3 | -3 | -3 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ23 | 6 | -6 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 6i | -6i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 6 | -6 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -6i | 6i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 10 3 12)(2 11 4 9)(5 8 7 6)(13 18 15 20)(14 19 16 17)(21 22 23 24)
(1 12)(2 9)(3 10)(4 11)(5 21)(6 22)(7 23)(8 24)(17 19)(18 20)
(1 3)(2 4)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(21 23)(22 24)
(1 24 16)(2 21 13)(3 22 14)(4 23 15)(5 18 10)(6 19 11)(7 20 12)(8 17 9)
G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,10,3,12)(2,11,4,9)(5,8,7,6)(13,18,15,20)(14,19,16,17)(21,22,23,24), (1,12)(2,9)(3,10)(4,11)(5,21)(6,22)(7,23)(8,24)(17,19)(18,20), (1,3)(2,4)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(21,23)(22,24), (1,24,16)(2,21,13)(3,22,14)(4,23,15)(5,18,10)(6,19,11)(7,20,12)(8,17,9)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,10,3,12)(2,11,4,9)(5,8,7,6)(13,18,15,20)(14,19,16,17)(21,22,23,24), (1,12)(2,9)(3,10)(4,11)(5,21)(6,22)(7,23)(8,24)(17,19)(18,20), (1,3)(2,4)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(21,23)(22,24), (1,24,16)(2,21,13)(3,22,14)(4,23,15)(5,18,10)(6,19,11)(7,20,12)(8,17,9) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,10,3,12),(2,11,4,9),(5,8,7,6),(13,18,15,20),(14,19,16,17),(21,22,23,24)], [(1,12),(2,9),(3,10),(4,11),(5,21),(6,22),(7,23),(8,24),(17,19),(18,20)], [(1,3),(2,4),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(21,23),(22,24)], [(1,24,16),(2,21,13),(3,22,14),(4,23,15),(5,18,10),(6,19,11),(7,20,12),(8,17,9)]])
G:=TransitiveGroup(24,302);
Matrix representation of C4○D4⋊A4 ►in GL5(𝔽13)
5 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 12 |
4 | 3 | 0 | 0 | 0 |
3 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 12 |
0 | 0 | 1 | 0 | 12 |
0 | 0 | 0 | 0 | 12 |
11 | 7 | 0 | 0 | 0 |
7 | 2 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 12 |
0 | 0 | 1 | 12 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 | 1 |
0 | 0 | 12 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 1 | 12 | 0 |
1 | 0 | 0 | 0 | 0 |
3 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
G:=sub<GL(5,GF(13))| [5,0,0,0,0,0,5,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[4,3,0,0,0,3,9,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,12,12,12],[11,7,0,0,0,7,2,0,0,0,0,0,1,1,1,0,0,0,0,12,0,0,0,12,0],[1,0,0,0,0,0,1,0,0,0,0,0,12,12,12,0,0,0,0,1,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,12,12,12,0,0,1,0,0],[1,3,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0] >;
C4○D4⋊A4 in GAP, Magma, Sage, TeX
C_4\circ D_4\rtimes A_4
% in TeX
G:=Group("C4oD4:A4");
// GroupNames label
G:=SmallGroup(192,1507);
// by ID
G=gap.SmallGroup(192,1507);
# by ID
G:=PCGroup([7,-2,-3,-2,2,-2,2,-2,672,135,262,851,172,1524,285,124]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^4=c^2=d^2=e^2=f^3=1,b^2=a^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=a^2*b,b*d=d*b,b*e=e*b,f*b*f^-1=a^-1*b*c,c*d=d*c,c*e=e*c,f*c*f^-1=a^-1*b,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations
Export