direct product, non-abelian, soluble, monomial, rational
Aliases: C2×S4, C2≀S3, O3(𝔽3), CO3(𝔽3), C23⋊S3, C22⋊D6, A4⋊C22, (C2×A4)⋊C2, group of symmetries of a cube (and its dual - regular octahedron), SmallGroup(48,48)
Series: Derived ►Chief ►Lower central ►Upper central
A4 — C2×S4 |
Generators and relations for C2×S4
G = < a,b,c,d,e | a2=b2=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=ebe=bc=cb, dcd-1=b, ce=ec, ede=d-1 >
Character table of C2×S4
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 6 | |
size | 1 | 1 | 3 | 3 | 6 | 6 | 8 | 6 | 6 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | 1 | orthogonal lifted from D6 |
ρ6 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 0 | 0 | -1 | orthogonal lifted from S3 |
ρ7 | 3 | 3 | -1 | -1 | 1 | 1 | 0 | -1 | -1 | 0 | orthogonal lifted from S4 |
ρ8 | 3 | -3 | -1 | 1 | -1 | 1 | 0 | -1 | 1 | 0 | orthogonal faithful |
ρ9 | 3 | -3 | -1 | 1 | 1 | -1 | 0 | 1 | -1 | 0 | orthogonal faithful |
ρ10 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 1 | 1 | 0 | orthogonal lifted from S4 |
(1 6)(2 4)(3 5)
(1 6)(2 4)
(2 4)(3 5)
(1 2 3)(4 5 6)
(1 6)(2 5)(3 4)
G:=sub<Sym(6)| (1,6)(2,4)(3,5), (1,6)(2,4), (2,4)(3,5), (1,2,3)(4,5,6), (1,6)(2,5)(3,4)>;
G:=Group( (1,6)(2,4)(3,5), (1,6)(2,4), (2,4)(3,5), (1,2,3)(4,5,6), (1,6)(2,5)(3,4) );
G=PermutationGroup([[(1,6),(2,4),(3,5)], [(1,6),(2,4)], [(2,4),(3,5)], [(1,2,3),(4,5,6)], [(1,6),(2,5),(3,4)]])
G:=TransitiveGroup(6,11);
(1 2)(3 7)(4 8)(5 6)
(1 7)(2 3)(4 5)(6 8)
(1 8)(2 4)(3 5)(6 7)
(3 4 5)(6 7 8)
(1 2)(3 6)(4 8)(5 7)
G:=sub<Sym(8)| (1,2)(3,7)(4,8)(5,6), (1,7)(2,3)(4,5)(6,8), (1,8)(2,4)(3,5)(6,7), (3,4,5)(6,7,8), (1,2)(3,6)(4,8)(5,7)>;
G:=Group( (1,2)(3,7)(4,8)(5,6), (1,7)(2,3)(4,5)(6,8), (1,8)(2,4)(3,5)(6,7), (3,4,5)(6,7,8), (1,2)(3,6)(4,8)(5,7) );
G=PermutationGroup([[(1,2),(3,7),(4,8),(5,6)], [(1,7),(2,3),(4,5),(6,8)], [(1,8),(2,4),(3,5),(6,7)], [(3,4,5),(6,7,8)], [(1,2),(3,6),(4,8),(5,7)]])
G:=TransitiveGroup(8,24);
(1 9)(2 7)(3 8)(4 10)(5 11)(6 12)
(2 7)(3 8)(4 10)(6 12)
(1 9)(3 8)(4 10)(5 11)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)
(1 10)(2 12)(3 11)(4 9)(5 8)(6 7)
G:=sub<Sym(12)| (1,9)(2,7)(3,8)(4,10)(5,11)(6,12), (2,7)(3,8)(4,10)(6,12), (1,9)(3,8)(4,10)(5,11), (1,2,3)(4,5,6)(7,8,9)(10,11,12), (1,10)(2,12)(3,11)(4,9)(5,8)(6,7)>;
G:=Group( (1,9)(2,7)(3,8)(4,10)(5,11)(6,12), (2,7)(3,8)(4,10)(6,12), (1,9)(3,8)(4,10)(5,11), (1,2,3)(4,5,6)(7,8,9)(10,11,12), (1,10)(2,12)(3,11)(4,9)(5,8)(6,7) );
G=PermutationGroup([[(1,9),(2,7),(3,8),(4,10),(5,11),(6,12)], [(2,7),(3,8),(4,10),(6,12)], [(1,9),(3,8),(4,10),(5,11)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12)], [(1,10),(2,12),(3,11),(4,9),(5,8),(6,7)]])
G:=TransitiveGroup(12,21);
(1 6)(2 4)(3 5)(7 11)(8 12)(9 10)
(1 11)(2 8)(3 5)(4 12)(6 7)(9 10)
(1 6)(2 12)(3 9)(4 8)(5 10)(7 11)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)
(2 3)(4 5)(7 11)(8 10)(9 12)
G:=sub<Sym(12)| (1,6)(2,4)(3,5)(7,11)(8,12)(9,10), (1,11)(2,8)(3,5)(4,12)(6,7)(9,10), (1,6)(2,12)(3,9)(4,8)(5,10)(7,11), (1,2,3)(4,5,6)(7,8,9)(10,11,12), (2,3)(4,5)(7,11)(8,10)(9,12)>;
G:=Group( (1,6)(2,4)(3,5)(7,11)(8,12)(9,10), (1,11)(2,8)(3,5)(4,12)(6,7)(9,10), (1,6)(2,12)(3,9)(4,8)(5,10)(7,11), (1,2,3)(4,5,6)(7,8,9)(10,11,12), (2,3)(4,5)(7,11)(8,10)(9,12) );
G=PermutationGroup([[(1,6),(2,4),(3,5),(7,11),(8,12),(9,10)], [(1,11),(2,8),(3,5),(4,12),(6,7),(9,10)], [(1,6),(2,12),(3,9),(4,8),(5,10),(7,11)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12)], [(2,3),(4,5),(7,11),(8,10),(9,12)]])
G:=TransitiveGroup(12,22);
(1 11)(2 12)(3 10)(4 7)(5 8)(6 9)
(1 9)(2 7)(4 12)(6 11)
(2 7)(3 8)(4 12)(5 10)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)
(2 3)(4 5)(7 8)(10 12)
G:=sub<Sym(12)| (1,11)(2,12)(3,10)(4,7)(5,8)(6,9), (1,9)(2,7)(4,12)(6,11), (2,7)(3,8)(4,12)(5,10), (1,2,3)(4,5,6)(7,8,9)(10,11,12), (2,3)(4,5)(7,8)(10,12)>;
G:=Group( (1,11)(2,12)(3,10)(4,7)(5,8)(6,9), (1,9)(2,7)(4,12)(6,11), (2,7)(3,8)(4,12)(5,10), (1,2,3)(4,5,6)(7,8,9)(10,11,12), (2,3)(4,5)(7,8)(10,12) );
G=PermutationGroup([[(1,11),(2,12),(3,10),(4,7),(5,8),(6,9)], [(1,9),(2,7),(4,12),(6,11)], [(2,7),(3,8),(4,12),(5,10)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12)], [(2,3),(4,5),(7,8),(10,12)]])
G:=TransitiveGroup(12,23);
(1 11)(2 12)(3 10)(4 7)(5 8)(6 9)
(1 9)(2 7)(4 12)(6 11)
(2 7)(3 8)(4 12)(5 10)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)
(1 9)(2 8)(3 7)(4 10)(5 12)(6 11)
G:=sub<Sym(12)| (1,11)(2,12)(3,10)(4,7)(5,8)(6,9), (1,9)(2,7)(4,12)(6,11), (2,7)(3,8)(4,12)(5,10), (1,2,3)(4,5,6)(7,8,9)(10,11,12), (1,9)(2,8)(3,7)(4,10)(5,12)(6,11)>;
G:=Group( (1,11)(2,12)(3,10)(4,7)(5,8)(6,9), (1,9)(2,7)(4,12)(6,11), (2,7)(3,8)(4,12)(5,10), (1,2,3)(4,5,6)(7,8,9)(10,11,12), (1,9)(2,8)(3,7)(4,10)(5,12)(6,11) );
G=PermutationGroup([[(1,11),(2,12),(3,10),(4,7),(5,8),(6,9)], [(1,9),(2,7),(4,12),(6,11)], [(2,7),(3,8),(4,12),(5,10)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12)], [(1,9),(2,8),(3,7),(4,10),(5,12),(6,11)]])
G:=TransitiveGroup(12,24);
(1 3)(2 4)(5 12)(6 13)(7 11)(8 16)(9 14)(10 15)
(1 10)(2 5)(3 15)(4 12)(6 7)(8 9)(11 13)(14 16)
(1 8)(2 6)(3 16)(4 13)(5 7)(9 10)(11 12)(14 15)
(5 6 7)(8 9 10)(11 12 13)(14 15 16)
(1 2)(3 4)(5 9)(6 8)(7 10)(11 15)(12 14)(13 16)
G:=sub<Sym(16)| (1,3)(2,4)(5,12)(6,13)(7,11)(8,16)(9,14)(10,15), (1,10)(2,5)(3,15)(4,12)(6,7)(8,9)(11,13)(14,16), (1,8)(2,6)(3,16)(4,13)(5,7)(9,10)(11,12)(14,15), (5,6,7)(8,9,10)(11,12,13)(14,15,16), (1,2)(3,4)(5,9)(6,8)(7,10)(11,15)(12,14)(13,16)>;
G:=Group( (1,3)(2,4)(5,12)(6,13)(7,11)(8,16)(9,14)(10,15), (1,10)(2,5)(3,15)(4,12)(6,7)(8,9)(11,13)(14,16), (1,8)(2,6)(3,16)(4,13)(5,7)(9,10)(11,12)(14,15), (5,6,7)(8,9,10)(11,12,13)(14,15,16), (1,2)(3,4)(5,9)(6,8)(7,10)(11,15)(12,14)(13,16) );
G=PermutationGroup([[(1,3),(2,4),(5,12),(6,13),(7,11),(8,16),(9,14),(10,15)], [(1,10),(2,5),(3,15),(4,12),(6,7),(8,9),(11,13),(14,16)], [(1,8),(2,6),(3,16),(4,13),(5,7),(9,10),(11,12),(14,15)], [(5,6,7),(8,9,10),(11,12,13),(14,15,16)], [(1,2),(3,4),(5,9),(6,8),(7,10),(11,15),(12,14),(13,16)]])
G:=TransitiveGroup(16,61);
(1 11)(2 12)(3 10)(4 22)(5 23)(6 24)(7 19)(8 20)(9 21)(13 16)(14 17)(15 18)
(1 11)(2 15)(3 16)(4 20)(5 23)(6 7)(8 22)(9 21)(10 13)(12 18)(14 17)(19 24)
(1 17)(2 12)(3 13)(4 8)(5 21)(6 24)(7 19)(9 23)(10 16)(11 14)(15 18)(20 22)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
(1 8)(2 7)(3 9)(4 17)(5 16)(6 18)(10 21)(11 20)(12 19)(13 23)(14 22)(15 24)
G:=sub<Sym(24)| (1,11)(2,12)(3,10)(4,22)(5,23)(6,24)(7,19)(8,20)(9,21)(13,16)(14,17)(15,18), (1,11)(2,15)(3,16)(4,20)(5,23)(6,7)(8,22)(9,21)(10,13)(12,18)(14,17)(19,24), (1,17)(2,12)(3,13)(4,8)(5,21)(6,24)(7,19)(9,23)(10,16)(11,14)(15,18)(20,22), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,8)(2,7)(3,9)(4,17)(5,16)(6,18)(10,21)(11,20)(12,19)(13,23)(14,22)(15,24)>;
G:=Group( (1,11)(2,12)(3,10)(4,22)(5,23)(6,24)(7,19)(8,20)(9,21)(13,16)(14,17)(15,18), (1,11)(2,15)(3,16)(4,20)(5,23)(6,7)(8,22)(9,21)(10,13)(12,18)(14,17)(19,24), (1,17)(2,12)(3,13)(4,8)(5,21)(6,24)(7,19)(9,23)(10,16)(11,14)(15,18)(20,22), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,8)(2,7)(3,9)(4,17)(5,16)(6,18)(10,21)(11,20)(12,19)(13,23)(14,22)(15,24) );
G=PermutationGroup([[(1,11),(2,12),(3,10),(4,22),(5,23),(6,24),(7,19),(8,20),(9,21),(13,16),(14,17),(15,18)], [(1,11),(2,15),(3,16),(4,20),(5,23),(6,7),(8,22),(9,21),(10,13),(12,18),(14,17),(19,24)], [(1,17),(2,12),(3,13),(4,8),(5,21),(6,24),(7,19),(9,23),(10,16),(11,14),(15,18),(20,22)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)], [(1,8),(2,7),(3,9),(4,17),(5,16),(6,18),(10,21),(11,20),(12,19),(13,23),(14,22),(15,24)]])
G:=TransitiveGroup(24,46);
(1 11)(2 12)(3 10)(4 19)(5 20)(6 21)(7 13)(8 14)(9 15)(16 22)(17 23)(18 24)
(2 7)(3 8)(4 22)(6 24)(10 14)(12 13)(16 19)(18 21)
(1 9)(3 8)(4 22)(5 23)(10 14)(11 15)(16 19)(17 20)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
(1 16)(2 18)(3 17)(4 15)(5 14)(6 13)(7 21)(8 20)(9 19)(10 23)(11 22)(12 24)
G:=sub<Sym(24)| (1,11)(2,12)(3,10)(4,19)(5,20)(6,21)(7,13)(8,14)(9,15)(16,22)(17,23)(18,24), (2,7)(3,8)(4,22)(6,24)(10,14)(12,13)(16,19)(18,21), (1,9)(3,8)(4,22)(5,23)(10,14)(11,15)(16,19)(17,20), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,16)(2,18)(3,17)(4,15)(5,14)(6,13)(7,21)(8,20)(9,19)(10,23)(11,22)(12,24)>;
G:=Group( (1,11)(2,12)(3,10)(4,19)(5,20)(6,21)(7,13)(8,14)(9,15)(16,22)(17,23)(18,24), (2,7)(3,8)(4,22)(6,24)(10,14)(12,13)(16,19)(18,21), (1,9)(3,8)(4,22)(5,23)(10,14)(11,15)(16,19)(17,20), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,16)(2,18)(3,17)(4,15)(5,14)(6,13)(7,21)(8,20)(9,19)(10,23)(11,22)(12,24) );
G=PermutationGroup([[(1,11),(2,12),(3,10),(4,19),(5,20),(6,21),(7,13),(8,14),(9,15),(16,22),(17,23),(18,24)], [(2,7),(3,8),(4,22),(6,24),(10,14),(12,13),(16,19),(18,21)], [(1,9),(3,8),(4,22),(5,23),(10,14),(11,15),(16,19),(17,20)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)], [(1,16),(2,18),(3,17),(4,15),(5,14),(6,13),(7,21),(8,20),(9,19),(10,23),(11,22),(12,24)]])
G:=TransitiveGroup(24,47);
(1 7)(2 8)(3 9)(4 19)(5 20)(6 21)(10 22)(11 23)(12 24)(13 18)(14 16)(15 17)
(1 14)(2 12)(3 20)(4 17)(5 9)(6 23)(7 16)(8 24)(10 13)(11 21)(15 19)(18 22)
(1 21)(2 15)(3 10)(4 24)(5 18)(6 7)(8 17)(9 22)(11 14)(12 19)(13 20)(16 23)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
(2 3)(4 5)(8 9)(10 15)(11 14)(12 13)(16 23)(17 22)(18 24)(19 20)
G:=sub<Sym(24)| (1,7)(2,8)(3,9)(4,19)(5,20)(6,21)(10,22)(11,23)(12,24)(13,18)(14,16)(15,17), (1,14)(2,12)(3,20)(4,17)(5,9)(6,23)(7,16)(8,24)(10,13)(11,21)(15,19)(18,22), (1,21)(2,15)(3,10)(4,24)(5,18)(6,7)(8,17)(9,22)(11,14)(12,19)(13,20)(16,23), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (2,3)(4,5)(8,9)(10,15)(11,14)(12,13)(16,23)(17,22)(18,24)(19,20)>;
G:=Group( (1,7)(2,8)(3,9)(4,19)(5,20)(6,21)(10,22)(11,23)(12,24)(13,18)(14,16)(15,17), (1,14)(2,12)(3,20)(4,17)(5,9)(6,23)(7,16)(8,24)(10,13)(11,21)(15,19)(18,22), (1,21)(2,15)(3,10)(4,24)(5,18)(6,7)(8,17)(9,22)(11,14)(12,19)(13,20)(16,23), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (2,3)(4,5)(8,9)(10,15)(11,14)(12,13)(16,23)(17,22)(18,24)(19,20) );
G=PermutationGroup([[(1,7),(2,8),(3,9),(4,19),(5,20),(6,21),(10,22),(11,23),(12,24),(13,18),(14,16),(15,17)], [(1,14),(2,12),(3,20),(4,17),(5,9),(6,23),(7,16),(8,24),(10,13),(11,21),(15,19),(18,22)], [(1,21),(2,15),(3,10),(4,24),(5,18),(6,7),(8,17),(9,22),(11,14),(12,19),(13,20),(16,23)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)], [(2,3),(4,5),(8,9),(10,15),(11,14),(12,13),(16,23),(17,22),(18,24),(19,20)]])
G:=TransitiveGroup(24,48);
C2×S4 is a maximal subgroup of
C4⋊S4 A4⋊D4 C23.8S4 C24⋊D6 C42⋊D6 Q8⋊S4 C23⋊S4 Q8⋊2S4
C2×S4 is a maximal quotient of
A4⋊Q8 C4⋊S4 Q8.D6 C4.S4 C4.6S4 C4.3S4 A4⋊D4 C24⋊D6 C42⋊D6
action | f(x) | Disc(f) |
---|---|---|
6T11 | x6-x4+1 | -26·232 |
8T24 | x8-x7+x6+x2+x+1 | 26·54·372 |
12T21 | x12-15x10+84x8-215x6+243x4-90x2+4 | 222·314·236 |
12T22 | x12-9x9-5x8+7x6-18x5-125x4+9x3+23x2-57x+1 | 224·36·232·372·532·2295·44632 |
12T23 | x12-15x10+75x8-148x6+120x4-35x2+1 | 212·56·78·1974 |
12T24 | x12-4x11+8x10-8x9+3x8+2x7-2x5+3x4-2x3+2x2-2x+1 | 218·116·1672 |
Matrix representation of C2×S4 ►in GL3(ℤ) generated by
-1 | 0 | 0 |
0 | -1 | 0 |
0 | 0 | -1 |
-1 | 0 | 0 |
0 | -1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | -1 | 0 |
0 | 0 | -1 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 1 | 0 |
-1 | 0 | 0 |
0 | 0 | -1 |
0 | -1 | 0 |
G:=sub<GL(3,Integers())| [-1,0,0,0,-1,0,0,0,-1],[-1,0,0,0,-1,0,0,0,1],[1,0,0,0,-1,0,0,0,-1],[0,1,0,0,0,1,1,0,0],[-1,0,0,0,0,-1,0,-1,0] >;
C2×S4 in GAP, Magma, Sage, TeX
C_2\times S_4
% in TeX
G:=Group("C2xS4");
// GroupNames label
G:=SmallGroup(48,48);
// by ID
G=gap.SmallGroup(48,48);
# by ID
G:=PCGroup([5,-2,-2,-3,-2,2,122,483,133,304,239]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=e*b*e=b*c=c*b,d*c*d^-1=b,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export
Subgroup lattice of C2×S4 in TeX
Character table of C2×S4 in TeX