Copied to
clipboard

G = Q8:2S4order 192 = 26·3

2nd semidirect product of Q8 and S4 acting via S4/C22=S3

non-abelian, soluble, monomial, rational

Aliases: Q8:2S4, C23.6S4, 2+ 1+4:5S3, C23:A4:3C2, C2.7(C22:S4), Hol(Q8), SmallGroup(192,1494)

Series: Derived Chief Lower central Upper central

C1C22+ 1+4C23:A4 — Q8:2S4
C1C2Q82+ 1+4C23:A4 — Q8:2S4
C23:A4 — Q8:2S4
C1C2

Generators and relations for Q8:2S4
 G = < a,b,c,d,e,f | a4=c2=d2=e3=f2=1, b2=a2, bab-1=cac=dad=fbf=a-1, eae-1=a-1b, faf=dbd=a2b, bc=cb, ebe-1=a, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=e-1 >

Subgroups: 469 in 78 conjugacy classes, 8 normal (6 characteristic)
C1, C2, C2, C3, C4, C22, S3, C6, C8, C2xC4, D4, Q8, C23, C23, A4, D6, C42, M4(2), D8, SD16, C2xD4, C4oD4, SL2(F3), S4, C2xA4, C4.D4, C4wrC2, C4:1D4, C8:C22, 2+ 1+4, GL2(F3), C2xS4, D4:4D4, C23:A4, Q8:2S4
Quotients: C1, C2, S3, S4, C22:S4, Q8:2S4

Character table of Q8:2S4

 class 12A2B2C2D34A4B4C4D68A8B
 size 116122432661212322424
ρ11111111111111    trivial
ρ21111-1111-1-11-1-1    linear of order 2
ρ322220-12200-100    orthogonal lifted from S3
ρ4333-1-10-1-1-1-1011    orthogonal lifted from S4
ρ533-1-1103-1-1-10-11    orthogonal lifted from S4
ρ633-1-1-10-13110-11    orthogonal lifted from S4
ρ733-1-110-13-1-101-1    orthogonal lifted from S4
ρ833-1-1-103-11101-1    orthogonal lifted from S4
ρ9333-110-1-1110-1-1    orthogonal lifted from S4
ρ104-4000100-22-100    orthogonal faithful
ρ114-40001002-2-100    orthogonal faithful
ρ1266-2200-2-200000    orthogonal lifted from C22:S4
ρ138-8000-10000100    orthogonal faithful

Permutation representations of Q8:2S4
On 8 points - transitive group 8T40
Generators in S8
(1 2 3 4)(5 6 7 8)
(1 6 3 8)(2 5 4 7)
(2 4)(5 7)
(2 4)(6 8)
(2 6 7)(4 8 5)
(1 3)(2 6)(4 8)

G:=sub<Sym(8)| (1,2,3,4)(5,6,7,8), (1,6,3,8)(2,5,4,7), (2,4)(5,7), (2,4)(6,8), (2,6,7)(4,8,5), (1,3)(2,6)(4,8)>;

G:=Group( (1,2,3,4)(5,6,7,8), (1,6,3,8)(2,5,4,7), (2,4)(5,7), (2,4)(6,8), (2,6,7)(4,8,5), (1,3)(2,6)(4,8) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8)], [(1,6,3,8),(2,5,4,7)], [(2,4),(5,7)], [(2,4),(6,8)], [(2,6,7),(4,8,5)], [(1,3),(2,6),(4,8)]])

G:=TransitiveGroup(8,40);

On 16 points - transitive group 16T444
Generators in S16
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 9 3 11)(2 12 4 10)(5 14 7 16)(6 13 8 15)
(1 4)(2 3)(5 13)(6 16)(7 15)(8 14)(9 10)(11 12)
(1 11)(2 10)(3 9)(4 12)(5 6)(7 8)(13 16)(14 15)
(2 9 10)(4 11 12)(5 6 13)(7 8 15)
(1 14)(2 5)(3 16)(4 7)(6 10)(8 12)(9 13)(11 15)

G:=sub<Sym(16)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,9,3,11)(2,12,4,10)(5,14,7,16)(6,13,8,15), (1,4)(2,3)(5,13)(6,16)(7,15)(8,14)(9,10)(11,12), (1,11)(2,10)(3,9)(4,12)(5,6)(7,8)(13,16)(14,15), (2,9,10)(4,11,12)(5,6,13)(7,8,15), (1,14)(2,5)(3,16)(4,7)(6,10)(8,12)(9,13)(11,15)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,9,3,11)(2,12,4,10)(5,14,7,16)(6,13,8,15), (1,4)(2,3)(5,13)(6,16)(7,15)(8,14)(9,10)(11,12), (1,11)(2,10)(3,9)(4,12)(5,6)(7,8)(13,16)(14,15), (2,9,10)(4,11,12)(5,6,13)(7,8,15), (1,14)(2,5)(3,16)(4,7)(6,10)(8,12)(9,13)(11,15) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,9,3,11),(2,12,4,10),(5,14,7,16),(6,13,8,15)], [(1,4),(2,3),(5,13),(6,16),(7,15),(8,14),(9,10),(11,12)], [(1,11),(2,10),(3,9),(4,12),(5,6),(7,8),(13,16),(14,15)], [(2,9,10),(4,11,12),(5,6,13),(7,8,15)], [(1,14),(2,5),(3,16),(4,7),(6,10),(8,12),(9,13),(11,15)]])

G:=TransitiveGroup(16,444);

On 16 points - transitive group 16T445
Generators in S16
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 9 3 11)(2 12 4 10)(5 14 7 16)(6 13 8 15)
(2 4)(5 7)(10 12)(14 16)
(2 4)(6 8)(9 11)(14 16)
(2 9 10)(4 11 12)(5 14 8)(6 7 16)
(1 13)(2 6)(3 15)(4 8)(5 12)(7 10)(9 16)(11 14)

G:=sub<Sym(16)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,9,3,11)(2,12,4,10)(5,14,7,16)(6,13,8,15), (2,4)(5,7)(10,12)(14,16), (2,4)(6,8)(9,11)(14,16), (2,9,10)(4,11,12)(5,14,8)(6,7,16), (1,13)(2,6)(3,15)(4,8)(5,12)(7,10)(9,16)(11,14)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,9,3,11)(2,12,4,10)(5,14,7,16)(6,13,8,15), (2,4)(5,7)(10,12)(14,16), (2,4)(6,8)(9,11)(14,16), (2,9,10)(4,11,12)(5,14,8)(6,7,16), (1,13)(2,6)(3,15)(4,8)(5,12)(7,10)(9,16)(11,14) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,9,3,11),(2,12,4,10),(5,14,7,16),(6,13,8,15)], [(2,4),(5,7),(10,12),(14,16)], [(2,4),(6,8),(9,11),(14,16)], [(2,9,10),(4,11,12),(5,14,8),(6,7,16)], [(1,13),(2,6),(3,15),(4,8),(5,12),(7,10),(9,16),(11,14)]])

G:=TransitiveGroup(16,445);

On 24 points - transitive group 24T332
Generators in S24
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 10 3 12)(2 9 4 11)(5 23 7 21)(6 22 8 24)(13 17 15 19)(14 20 16 18)
(2 4)(6 8)(9 11)(14 16)(18 20)(22 24)
(2 4)(5 7)(10 12)(13 15)(18 20)(22 24)
(1 17 23)(2 15 8)(3 19 21)(4 13 6)(5 9 20)(7 11 18)(10 16 24)(12 14 22)
(1 3)(2 10)(4 12)(5 20)(6 14)(7 18)(8 16)(13 22)(15 24)(17 21)(19 23)

G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,10,3,12)(2,9,4,11)(5,23,7,21)(6,22,8,24)(13,17,15,19)(14,20,16,18), (2,4)(6,8)(9,11)(14,16)(18,20)(22,24), (2,4)(5,7)(10,12)(13,15)(18,20)(22,24), (1,17,23)(2,15,8)(3,19,21)(4,13,6)(5,9,20)(7,11,18)(10,16,24)(12,14,22), (1,3)(2,10)(4,12)(5,20)(6,14)(7,18)(8,16)(13,22)(15,24)(17,21)(19,23)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,10,3,12)(2,9,4,11)(5,23,7,21)(6,22,8,24)(13,17,15,19)(14,20,16,18), (2,4)(6,8)(9,11)(14,16)(18,20)(22,24), (2,4)(5,7)(10,12)(13,15)(18,20)(22,24), (1,17,23)(2,15,8)(3,19,21)(4,13,6)(5,9,20)(7,11,18)(10,16,24)(12,14,22), (1,3)(2,10)(4,12)(5,20)(6,14)(7,18)(8,16)(13,22)(15,24)(17,21)(19,23) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,10,3,12),(2,9,4,11),(5,23,7,21),(6,22,8,24),(13,17,15,19),(14,20,16,18)], [(2,4),(6,8),(9,11),(14,16),(18,20),(22,24)], [(2,4),(5,7),(10,12),(13,15),(18,20),(22,24)], [(1,17,23),(2,15,8),(3,19,21),(4,13,6),(5,9,20),(7,11,18),(10,16,24),(12,14,22)], [(1,3),(2,10),(4,12),(5,20),(6,14),(7,18),(8,16),(13,22),(15,24),(17,21),(19,23)]])

G:=TransitiveGroup(24,332);

On 24 points - transitive group 24T430
Generators in S24
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 7 3 5)(2 6 4 8)(9 14 11 16)(10 13 12 15)(17 23 19 21)(18 22 20 24)
(1 8)(2 7)(3 6)(4 5)(9 12)(10 11)(13 16)(14 15)(18 20)(22 24)
(1 3)(6 8)(9 12)(10 11)(13 14)(15 16)(17 21)(18 24)(19 23)(20 22)
(1 15 20)(2 10 21)(3 13 18)(4 12 23)(5 9 19)(6 14 22)(7 11 17)(8 16 24)
(2 5)(4 7)(6 8)(9 21)(10 19)(11 23)(12 17)(13 18)(14 24)(15 20)(16 22)

G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,7,3,5)(2,6,4,8)(9,14,11,16)(10,13,12,15)(17,23,19,21)(18,22,20,24), (1,8)(2,7)(3,6)(4,5)(9,12)(10,11)(13,16)(14,15)(18,20)(22,24), (1,3)(6,8)(9,12)(10,11)(13,14)(15,16)(17,21)(18,24)(19,23)(20,22), (1,15,20)(2,10,21)(3,13,18)(4,12,23)(5,9,19)(6,14,22)(7,11,17)(8,16,24), (2,5)(4,7)(6,8)(9,21)(10,19)(11,23)(12,17)(13,18)(14,24)(15,20)(16,22)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,7,3,5)(2,6,4,8)(9,14,11,16)(10,13,12,15)(17,23,19,21)(18,22,20,24), (1,8)(2,7)(3,6)(4,5)(9,12)(10,11)(13,16)(14,15)(18,20)(22,24), (1,3)(6,8)(9,12)(10,11)(13,14)(15,16)(17,21)(18,24)(19,23)(20,22), (1,15,20)(2,10,21)(3,13,18)(4,12,23)(5,9,19)(6,14,22)(7,11,17)(8,16,24), (2,5)(4,7)(6,8)(9,21)(10,19)(11,23)(12,17)(13,18)(14,24)(15,20)(16,22) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,7,3,5),(2,6,4,8),(9,14,11,16),(10,13,12,15),(17,23,19,21),(18,22,20,24)], [(1,8),(2,7),(3,6),(4,5),(9,12),(10,11),(13,16),(14,15),(18,20),(22,24)], [(1,3),(6,8),(9,12),(10,11),(13,14),(15,16),(17,21),(18,24),(19,23),(20,22)], [(1,15,20),(2,10,21),(3,13,18),(4,12,23),(5,9,19),(6,14,22),(7,11,17),(8,16,24)], [(2,5),(4,7),(6,8),(9,21),(10,19),(11,23),(12,17),(13,18),(14,24),(15,20),(16,22)]])

G:=TransitiveGroup(24,430);

Polynomial with Galois group Q8:2S4 over Q
actionf(x)Disc(f)
8T40x8+4x7-2x6-20x5-10x4+18x3+10x2-3x-133·174·593

Matrix representation of Q8:2S4 in GL4(Z) generated by

00-10
0001
1000
0-100
,
0100
-1000
0001
00-10
,
1000
0100
00-10
000-1
,
1000
0-100
00-10
0001
,
1000
00-10
0001
0-100
,
-1000
00-10
0-100
0001
G:=sub<GL(4,Integers())| [0,0,1,0,0,0,0,-1,-1,0,0,0,0,1,0,0],[0,-1,0,0,1,0,0,0,0,0,0,-1,0,0,1,0],[1,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,-1],[1,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,1],[1,0,0,0,0,0,0,-1,0,-1,0,0,0,0,1,0],[-1,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,1] >;

Q8:2S4 in GAP, Magma, Sage, TeX

Q_8\rtimes_2S_4
% in TeX

G:=Group("Q8:2S4");
// GroupNames label

G:=SmallGroup(192,1494);
// by ID

G=gap.SmallGroup(192,1494);
# by ID

G:=PCGroup([7,-2,-3,-2,2,-2,2,-2,57,254,135,171,262,1684,1271,718,172,1013,2532,530,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^4=c^2=d^2=e^3=f^2=1,b^2=a^2,b*a*b^-1=c*a*c=d*a*d=f*b*f=a^-1,e*a*e^-1=a^-1*b,f*a*f=d*b*d=a^2*b,b*c=c*b,e*b*e^-1=a,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=e^-1>;
// generators/relations

Export

Character table of Q8:2S4 in TeX

׿
x
:
Z
F
o
wr
Q
<