G = Q8⋊S4 order 192 = 26·3
non-abelian, soluble
Aliases:
Q8⋊1S4,
C23.12S4,
C22⋊GL2(𝔽3),
Q8⋊A4⋊2C2,
(C22×Q8)⋊7S3,
C2.3(C22⋊S4),
SmallGroup(192,1490)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Q8⋊S4
G = < a,b,c,d,e,f | a4=c2=d2=e3=f2=1, b2=a2, bab-1=fbf=a-1, ac=ca, ad=da, eae-1=ab, faf=a2b, bc=cb, bd=db, ebe-1=a, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=e-1 >
Subgroups: 405 in 73 conjugacy classes, 9 normal (7 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C8, C2×C4, D4, Q8, Q8, C23, C23, A4, D6, C22⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, SL2(𝔽3), S4, C2×A4, C22⋊C8, Q8⋊C4, C4⋊D4, C2×SD16, C22×Q8, GL2(𝔽3), C2×S4, Q8⋊D4, Q8⋊A4, Q8⋊S4
Quotients: C1, C2, S3, S4, GL2(𝔽3), C22⋊S4, Q8⋊S4
Character table of Q8⋊S4
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 6 | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 3 | 3 | 24 | 32 | 6 | 6 | 12 | 24 | 32 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 2 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ4 | 2 | -2 | -2 | 2 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from GL2(𝔽3) |
ρ5 | 2 | -2 | -2 | 2 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from GL2(𝔽3) |
ρ6 | 3 | 3 | 3 | 3 | 1 | 0 | -1 | -1 | -1 | 1 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S4 |
ρ7 | 3 | 3 | -1 | -1 | 1 | 0 | -1 | 3 | -1 | -1 | 0 | -1 | 1 | -1 | 1 | orthogonal lifted from S4 |
ρ8 | 3 | 3 | -1 | -1 | 1 | 0 | 3 | -1 | -1 | -1 | 0 | 1 | -1 | 1 | -1 | orthogonal lifted from S4 |
ρ9 | 3 | 3 | -1 | -1 | -1 | 0 | -1 | 3 | -1 | 1 | 0 | 1 | -1 | 1 | -1 | orthogonal lifted from S4 |
ρ10 | 3 | 3 | -1 | -1 | -1 | 0 | 3 | -1 | -1 | 1 | 0 | -1 | 1 | -1 | 1 | orthogonal lifted from S4 |
ρ11 | 3 | 3 | 3 | 3 | -1 | 0 | -1 | -1 | -1 | -1 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from S4 |
ρ12 | 4 | -4 | -4 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from GL2(𝔽3) |
ρ13 | 6 | 6 | -2 | -2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C22⋊S4 |
ρ14 | 6 | -6 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | complex faithful |
ρ15 | 6 | -6 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | complex faithful |
Permutation representations of Q8⋊S4
►On 24 points - transitive group
24T314Generators in S
24
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 12 3 10)(2 11 4 9)(5 22 7 24)(6 21 8 23)(13 17 15 19)(14 20 16 18)
(1 3)(2 4)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)
(5 7)(6 8)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)
(1 17 21)(2 15 7)(3 19 23)(4 13 5)(6 9 20)(8 11 18)(10 16 24)(12 14 22)
(2 10)(4 12)(5 14)(6 18)(7 16)(8 20)(9 11)(13 22)(15 24)(17 21)(19 23)
G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,12,3,10)(2,11,4,9)(5,22,7,24)(6,21,8,23)(13,17,15,19)(14,20,16,18), (1,3)(2,4)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20), (5,7)(6,8)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24), (1,17,21)(2,15,7)(3,19,23)(4,13,5)(6,9,20)(8,11,18)(10,16,24)(12,14,22), (2,10)(4,12)(5,14)(6,18)(7,16)(8,20)(9,11)(13,22)(15,24)(17,21)(19,23)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,12,3,10)(2,11,4,9)(5,22,7,24)(6,21,8,23)(13,17,15,19)(14,20,16,18), (1,3)(2,4)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20), (5,7)(6,8)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24), (1,17,21)(2,15,7)(3,19,23)(4,13,5)(6,9,20)(8,11,18)(10,16,24)(12,14,22), (2,10)(4,12)(5,14)(6,18)(7,16)(8,20)(9,11)(13,22)(15,24)(17,21)(19,23) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,12,3,10),(2,11,4,9),(5,22,7,24),(6,21,8,23),(13,17,15,19),(14,20,16,18)], [(1,3),(2,4),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20)], [(5,7),(6,8),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24)], [(1,17,21),(2,15,7),(3,19,23),(4,13,5),(6,9,20),(8,11,18),(10,16,24),(12,14,22)], [(2,10),(4,12),(5,14),(6,18),(7,16),(8,20),(9,11),(13,22),(15,24),(17,21),(19,23)]])
G:=TransitiveGroup(24,314);
Matrix representation of Q8⋊S4 ►in GL5(𝔽73)
0 | 1 | 0 | 0 | 0 |
72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 72 | 72 | 72 |
0 | 0 | 1 | 0 | 0 |
,
1 | 12 | 0 | 0 | 0 |
12 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 72 | 72 | 72 |
,
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 72 | 72 | 72 |
,
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 72 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
,
67 | 7 | 0 | 0 | 0 |
6 | 5 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 72 | 72 | 72 |
,
67 | 7 | 0 | 0 | 0 |
68 | 6 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
G:=sub<GL(5,GF(73))| [0,72,0,0,0,1,0,0,0,0,0,0,0,72,1,0,0,0,72,0,0,0,1,72,0],[1,12,0,0,0,12,72,0,0,0,0,0,0,1,72,0,0,1,0,72,0,0,0,0,72],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,72,0,0,1,0,72,0,0,0,0,72],[1,0,0,0,0,0,1,0,0,0,0,0,72,0,0,0,0,72,0,1,0,0,72,1,0],[67,6,0,0,0,7,5,0,0,0,0,0,1,0,72,0,0,0,0,72,0,0,0,1,72],[67,68,0,0,0,7,6,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0] >;
Q8⋊S4 in GAP, Magma, Sage, TeX
Q_8\rtimes S_4
% in TeX
G:=Group("Q8:S4");
// GroupNames label
G:=SmallGroup(192,1490);
// by ID
G=gap.SmallGroup(192,1490);
# by ID
G:=PCGroup([7,-2,-3,-2,2,-2,2,-2,57,254,135,171,262,1684,1271,172,1013,2532,285,124]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^4=c^2=d^2=e^3=f^2=1,b^2=a^2,b*a*b^-1=f*b*f=a^-1,a*c=c*a,a*d=d*a,e*a*e^-1=a*b,f*a*f=a^2*b,b*c=c*b,b*d=d*b,e*b*e^-1=a,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=e^-1>;
// generators/relations
Export
Character table of Q8⋊S4 in TeX