Copied to
clipboard

G = A4×C3×C6order 216 = 23·33

Direct product of C3×C6 and A4

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×C3×C6, C23⋊C33, C629C6, (C2×C62)⋊3C3, C22⋊(C32×C6), (C22×C6)⋊C32, (C2×C6)⋊2(C3×C6), SmallGroup(216,173)

Series: Derived Chief Lower central Upper central

C1C22 — A4×C3×C6
C1C22C2×C6C62C32×A4 — A4×C3×C6
C22 — A4×C3×C6
C1C3×C6

Generators and relations for A4×C3×C6
 G = < a,b,c,d,e | a3=b6=c2=d2=e3=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, ede-1=c >

Subgroups: 316 in 136 conjugacy classes, 68 normal (10 characteristic)
C1, C2, C2, C3, C3, C22, C22, C6, C6, C23, C32, C32, A4, C2×C6, C2×C6, C3×C6, C3×C6, C2×A4, C22×C6, C33, C3×A4, C62, C62, C32×C6, C6×A4, C2×C62, C32×A4, A4×C3×C6
Quotients: C1, C2, C3, C6, C32, A4, C3×C6, C2×A4, C33, C3×A4, C32×C6, C6×A4, C32×A4, A4×C3×C6

Smallest permutation representation of A4×C3×C6
On 54 points
Generators in S54
(1 15 11)(2 16 12)(3 17 7)(4 18 8)(5 13 9)(6 14 10)(19 33 29)(20 34 30)(21 35 25)(22 36 26)(23 31 27)(24 32 28)(37 51 47)(38 52 48)(39 53 43)(40 54 44)(41 49 45)(42 50 46)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)
(19 22)(20 23)(21 24)(25 28)(26 29)(27 30)(31 34)(32 35)(33 36)(37 40)(38 41)(39 42)(43 46)(44 47)(45 48)(49 52)(50 53)(51 54)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)(25 28)(26 29)(27 30)(31 34)(32 35)(33 36)
(1 49 25)(2 50 26)(3 51 27)(4 52 28)(5 53 29)(6 54 30)(7 37 31)(8 38 32)(9 39 33)(10 40 34)(11 41 35)(12 42 36)(13 43 19)(14 44 20)(15 45 21)(16 46 22)(17 47 23)(18 48 24)

G:=sub<Sym(54)| (1,15,11)(2,16,12)(3,17,7)(4,18,8)(5,13,9)(6,14,10)(19,33,29)(20,34,30)(21,35,25)(22,36,26)(23,31,27)(24,32,28)(37,51,47)(38,52,48)(39,53,43)(40,54,44)(41,49,45)(42,50,46), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54), (19,22)(20,23)(21,24)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42)(43,46)(44,47)(45,48)(49,52)(50,53)(51,54), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36), (1,49,25)(2,50,26)(3,51,27)(4,52,28)(5,53,29)(6,54,30)(7,37,31)(8,38,32)(9,39,33)(10,40,34)(11,41,35)(12,42,36)(13,43,19)(14,44,20)(15,45,21)(16,46,22)(17,47,23)(18,48,24)>;

G:=Group( (1,15,11)(2,16,12)(3,17,7)(4,18,8)(5,13,9)(6,14,10)(19,33,29)(20,34,30)(21,35,25)(22,36,26)(23,31,27)(24,32,28)(37,51,47)(38,52,48)(39,53,43)(40,54,44)(41,49,45)(42,50,46), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54), (19,22)(20,23)(21,24)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42)(43,46)(44,47)(45,48)(49,52)(50,53)(51,54), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36), (1,49,25)(2,50,26)(3,51,27)(4,52,28)(5,53,29)(6,54,30)(7,37,31)(8,38,32)(9,39,33)(10,40,34)(11,41,35)(12,42,36)(13,43,19)(14,44,20)(15,45,21)(16,46,22)(17,47,23)(18,48,24) );

G=PermutationGroup([[(1,15,11),(2,16,12),(3,17,7),(4,18,8),(5,13,9),(6,14,10),(19,33,29),(20,34,30),(21,35,25),(22,36,26),(23,31,27),(24,32,28),(37,51,47),(38,52,48),(39,53,43),(40,54,44),(41,49,45),(42,50,46)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54)], [(19,22),(20,23),(21,24),(25,28),(26,29),(27,30),(31,34),(32,35),(33,36),(37,40),(38,41),(39,42),(43,46),(44,47),(45,48),(49,52),(50,53),(51,54)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24),(25,28),(26,29),(27,30),(31,34),(32,35),(33,36)], [(1,49,25),(2,50,26),(3,51,27),(4,52,28),(5,53,29),(6,54,30),(7,37,31),(8,38,32),(9,39,33),(10,40,34),(11,41,35),(12,42,36),(13,43,19),(14,44,20),(15,45,21),(16,46,22),(17,47,23),(18,48,24)]])

A4×C3×C6 is a maximal subgroup of   C6210Dic3

72 conjugacy classes

class 1 2A2B2C3A···3H3I···3Z6A···6H6I···6X6Y···6AP
order12223···33···36···66···66···6
size11331···14···41···13···34···4

72 irreducible representations

dim1111113333
type++++
imageC1C2C3C3C6C6A4C2×A4C3×A4C6×A4
kernelA4×C3×C6C32×A4C6×A4C2×C62C3×A4C62C3×C6C32C6C3
# reps112422421188

Matrix representation of A4×C3×C6 in GL4(𝔽7) generated by

1000
0400
0040
0004
,
3000
0600
0060
0006
,
1000
0100
0460
0206
,
1000
0600
0060
0501
,
2000
0260
0054
0060
G:=sub<GL(4,GF(7))| [1,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[3,0,0,0,0,6,0,0,0,0,6,0,0,0,0,6],[1,0,0,0,0,1,4,2,0,0,6,0,0,0,0,6],[1,0,0,0,0,6,0,5,0,0,6,0,0,0,0,1],[2,0,0,0,0,2,0,0,0,6,5,6,0,0,4,0] >;

A4×C3×C6 in GAP, Magma, Sage, TeX

A_4\times C_3\times C_6
% in TeX

G:=Group("A4xC3xC6");
// GroupNames label

G:=SmallGroup(216,173);
// by ID

G=gap.SmallGroup(216,173);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-2,2,1630,2927]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^6=c^2=d^2=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations

׿
×
𝔽