direct product, abelian, monomial, 2-elementary
Aliases: C2×C100, SmallGroup(200,9)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2×C100 |
C1 — C2×C100 |
C1 — C2×C100 |
Generators and relations for C2×C100
G = < a,b | a2=b100=1, ab=ba >
(1 113)(2 114)(3 115)(4 116)(5 117)(6 118)(7 119)(8 120)(9 121)(10 122)(11 123)(12 124)(13 125)(14 126)(15 127)(16 128)(17 129)(18 130)(19 131)(20 132)(21 133)(22 134)(23 135)(24 136)(25 137)(26 138)(27 139)(28 140)(29 141)(30 142)(31 143)(32 144)(33 145)(34 146)(35 147)(36 148)(37 149)(38 150)(39 151)(40 152)(41 153)(42 154)(43 155)(44 156)(45 157)(46 158)(47 159)(48 160)(49 161)(50 162)(51 163)(52 164)(53 165)(54 166)(55 167)(56 168)(57 169)(58 170)(59 171)(60 172)(61 173)(62 174)(63 175)(64 176)(65 177)(66 178)(67 179)(68 180)(69 181)(70 182)(71 183)(72 184)(73 185)(74 186)(75 187)(76 188)(77 189)(78 190)(79 191)(80 192)(81 193)(82 194)(83 195)(84 196)(85 197)(86 198)(87 199)(88 200)(89 101)(90 102)(91 103)(92 104)(93 105)(94 106)(95 107)(96 108)(97 109)(98 110)(99 111)(100 112)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200)
G:=sub<Sym(200)| (1,113)(2,114)(3,115)(4,116)(5,117)(6,118)(7,119)(8,120)(9,121)(10,122)(11,123)(12,124)(13,125)(14,126)(15,127)(16,128)(17,129)(18,130)(19,131)(20,132)(21,133)(22,134)(23,135)(24,136)(25,137)(26,138)(27,139)(28,140)(29,141)(30,142)(31,143)(32,144)(33,145)(34,146)(35,147)(36,148)(37,149)(38,150)(39,151)(40,152)(41,153)(42,154)(43,155)(44,156)(45,157)(46,158)(47,159)(48,160)(49,161)(50,162)(51,163)(52,164)(53,165)(54,166)(55,167)(56,168)(57,169)(58,170)(59,171)(60,172)(61,173)(62,174)(63,175)(64,176)(65,177)(66,178)(67,179)(68,180)(69,181)(70,182)(71,183)(72,184)(73,185)(74,186)(75,187)(76,188)(77,189)(78,190)(79,191)(80,192)(81,193)(82,194)(83,195)(84,196)(85,197)(86,198)(87,199)(88,200)(89,101)(90,102)(91,103)(92,104)(93,105)(94,106)(95,107)(96,108)(97,109)(98,110)(99,111)(100,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)>;
G:=Group( (1,113)(2,114)(3,115)(4,116)(5,117)(6,118)(7,119)(8,120)(9,121)(10,122)(11,123)(12,124)(13,125)(14,126)(15,127)(16,128)(17,129)(18,130)(19,131)(20,132)(21,133)(22,134)(23,135)(24,136)(25,137)(26,138)(27,139)(28,140)(29,141)(30,142)(31,143)(32,144)(33,145)(34,146)(35,147)(36,148)(37,149)(38,150)(39,151)(40,152)(41,153)(42,154)(43,155)(44,156)(45,157)(46,158)(47,159)(48,160)(49,161)(50,162)(51,163)(52,164)(53,165)(54,166)(55,167)(56,168)(57,169)(58,170)(59,171)(60,172)(61,173)(62,174)(63,175)(64,176)(65,177)(66,178)(67,179)(68,180)(69,181)(70,182)(71,183)(72,184)(73,185)(74,186)(75,187)(76,188)(77,189)(78,190)(79,191)(80,192)(81,193)(82,194)(83,195)(84,196)(85,197)(86,198)(87,199)(88,200)(89,101)(90,102)(91,103)(92,104)(93,105)(94,106)(95,107)(96,108)(97,109)(98,110)(99,111)(100,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200) );
G=PermutationGroup([[(1,113),(2,114),(3,115),(4,116),(5,117),(6,118),(7,119),(8,120),(9,121),(10,122),(11,123),(12,124),(13,125),(14,126),(15,127),(16,128),(17,129),(18,130),(19,131),(20,132),(21,133),(22,134),(23,135),(24,136),(25,137),(26,138),(27,139),(28,140),(29,141),(30,142),(31,143),(32,144),(33,145),(34,146),(35,147),(36,148),(37,149),(38,150),(39,151),(40,152),(41,153),(42,154),(43,155),(44,156),(45,157),(46,158),(47,159),(48,160),(49,161),(50,162),(51,163),(52,164),(53,165),(54,166),(55,167),(56,168),(57,169),(58,170),(59,171),(60,172),(61,173),(62,174),(63,175),(64,176),(65,177),(66,178),(67,179),(68,180),(69,181),(70,182),(71,183),(72,184),(73,185),(74,186),(75,187),(76,188),(77,189),(78,190),(79,191),(80,192),(81,193),(82,194),(83,195),(84,196),(85,197),(86,198),(87,199),(88,200),(89,101),(90,102),(91,103),(92,104),(93,105),(94,106),(95,107),(96,108),(97,109),(98,110),(99,111),(100,112)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)]])
C2×C100 is a maximal subgroup of
C4.Dic25 C50.D4 C4⋊Dic25 D50⋊C4 D100⋊5C2
200 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 5A | 5B | 5C | 5D | 10A | ··· | 10L | 20A | ··· | 20P | 25A | ··· | 25T | 50A | ··· | 50BH | 100A | ··· | 100CB |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 | 25 | ··· | 25 | 50 | ··· | 50 | 100 | ··· | 100 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
200 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | + | |||||||||
image | C1 | C2 | C2 | C4 | C5 | C10 | C10 | C20 | C25 | C50 | C50 | C100 |
kernel | C2×C100 | C100 | C2×C50 | C50 | C2×C20 | C20 | C2×C10 | C10 | C2×C4 | C4 | C22 | C2 |
# reps | 1 | 2 | 1 | 4 | 4 | 8 | 4 | 16 | 20 | 40 | 20 | 80 |
Matrix representation of C2×C100 ►in GL2(𝔽101) generated by
100 | 0 |
0 | 100 |
31 | 0 |
0 | 89 |
G:=sub<GL(2,GF(101))| [100,0,0,100],[31,0,0,89] >;
C2×C100 in GAP, Magma, Sage, TeX
C_2\times C_{100}
% in TeX
G:=Group("C2xC100");
// GroupNames label
G:=SmallGroup(200,9);
// by ID
G=gap.SmallGroup(200,9);
# by ID
G:=PCGroup([5,-2,-2,-5,-2,-5,100,162]);
// Polycyclic
G:=Group<a,b|a^2=b^100=1,a*b=b*a>;
// generators/relations
Export