Copied to
clipboard

G = C5×C13⋊C3order 195 = 3·5·13

Direct product of C5 and C13⋊C3

direct product, metacyclic, supersoluble, monomial, Z-group, 3-hyperelementary

Aliases: C5×C13⋊C3, C65⋊C3, C13⋊C15, SmallGroup(195,1)

Series: Derived Chief Lower central Upper central

C1C13 — C5×C13⋊C3
C1C13C65 — C5×C13⋊C3
C13 — C5×C13⋊C3
C1C5

Generators and relations for C5×C13⋊C3
 G = < a,b,c | a5=b13=c3=1, ab=ba, ac=ca, cbc-1=b9 >

13C3
13C15

Smallest permutation representation of C5×C13⋊C3
On 65 points
Generators in S65
(1 53 40 27 14)(2 54 41 28 15)(3 55 42 29 16)(4 56 43 30 17)(5 57 44 31 18)(6 58 45 32 19)(7 59 46 33 20)(8 60 47 34 21)(9 61 48 35 22)(10 62 49 36 23)(11 63 50 37 24)(12 64 51 38 25)(13 65 52 39 26)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)
(2 4 10)(3 7 6)(5 13 11)(8 9 12)(15 17 23)(16 20 19)(18 26 24)(21 22 25)(28 30 36)(29 33 32)(31 39 37)(34 35 38)(41 43 49)(42 46 45)(44 52 50)(47 48 51)(54 56 62)(55 59 58)(57 65 63)(60 61 64)

G:=sub<Sym(65)| (1,53,40,27,14)(2,54,41,28,15)(3,55,42,29,16)(4,56,43,30,17)(5,57,44,31,18)(6,58,45,32,19)(7,59,46,33,20)(8,60,47,34,21)(9,61,48,35,22)(10,62,49,36,23)(11,63,50,37,24)(12,64,51,38,25)(13,65,52,39,26), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51)(54,56,62)(55,59,58)(57,65,63)(60,61,64)>;

G:=Group( (1,53,40,27,14)(2,54,41,28,15)(3,55,42,29,16)(4,56,43,30,17)(5,57,44,31,18)(6,58,45,32,19)(7,59,46,33,20)(8,60,47,34,21)(9,61,48,35,22)(10,62,49,36,23)(11,63,50,37,24)(12,64,51,38,25)(13,65,52,39,26), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51)(54,56,62)(55,59,58)(57,65,63)(60,61,64) );

G=PermutationGroup([[(1,53,40,27,14),(2,54,41,28,15),(3,55,42,29,16),(4,56,43,30,17),(5,57,44,31,18),(6,58,45,32,19),(7,59,46,33,20),(8,60,47,34,21),(9,61,48,35,22),(10,62,49,36,23),(11,63,50,37,24),(12,64,51,38,25),(13,65,52,39,26)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65)], [(2,4,10),(3,7,6),(5,13,11),(8,9,12),(15,17,23),(16,20,19),(18,26,24),(21,22,25),(28,30,36),(29,33,32),(31,39,37),(34,35,38),(41,43,49),(42,46,45),(44,52,50),(47,48,51),(54,56,62),(55,59,58),(57,65,63),(60,61,64)]])

C5×C13⋊C3 is a maximal subgroup of   D65⋊C3

35 conjugacy classes

class 1 3A3B5A5B5C5D13A13B13C13D15A···15H65A···65P
order13355551313131315···1565···65
size113131111333313···133···3

35 irreducible representations

dim111133
type+
imageC1C3C5C15C13⋊C3C5×C13⋊C3
kernelC5×C13⋊C3C65C13⋊C3C13C5C1
# reps1248416

Matrix representation of C5×C13⋊C3 in GL3(𝔽1171) generated by

21600
02160
00216
,
10778521
7105251151
249410832
,
1169931460
83875865
8217901098
G:=sub<GL(3,GF(1171))| [216,0,0,0,216,0,0,0,216],[1077,710,249,852,525,410,1,1151,832],[1169,838,821,931,75,790,460,865,1098] >;

C5×C13⋊C3 in GAP, Magma, Sage, TeX

C_5\times C_{13}\rtimes C_3
% in TeX

G:=Group("C5xC13:C3");
// GroupNames label

G:=SmallGroup(195,1);
// by ID

G=gap.SmallGroup(195,1);
# by ID

G:=PCGroup([3,-3,-5,-13,407]);
// Polycyclic

G:=Group<a,b,c|a^5=b^13=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^9>;
// generators/relations

Export

Subgroup lattice of C5×C13⋊C3 in TeX

׿
×
𝔽