Extensions 1→N→G→Q→1 with N=C52 and Q=C4

Direct product G=N×Q with N=C52 and Q=C4
dρLabelID
C4×C52208C4xC52208,20

Semidirect products G=N:Q with N=C52 and Q=C4
extensionφ:Q→Aut NdρLabelID
C521C4 = C52⋊C4φ: C4/C1C4 ⊆ Aut C52524C52:1C4208,31
C522C4 = C4×C13⋊C4φ: C4/C1C4 ⊆ Aut C52524C52:2C4208,30
C523C4 = C523C4φ: C4/C2C2 ⊆ Aut C52208C52:3C4208,13
C524C4 = C4×Dic13φ: C4/C2C2 ⊆ Aut C52208C52:4C4208,11
C525C4 = C13×C4⋊C4φ: C4/C2C2 ⊆ Aut C52208C52:5C4208,22

Non-split extensions G=N.Q with N=C52 and Q=C4
extensionφ:Q→Aut NdρLabelID
C52.1C4 = C52.C4φ: C4/C1C4 ⊆ Aut C521044C52.1C4208,29
C52.2C4 = C13⋊C16φ: C4/C1C4 ⊆ Aut C522084C52.2C4208,3
C52.3C4 = D13⋊C8φ: C4/C1C4 ⊆ Aut C521044C52.3C4208,28
C52.4C4 = C52.4C4φ: C4/C2C2 ⊆ Aut C521042C52.4C4208,10
C52.5C4 = C132C16φ: C4/C2C2 ⊆ Aut C522082C52.5C4208,1
C52.6C4 = C2×C132C8φ: C4/C2C2 ⊆ Aut C52208C52.6C4208,9
C52.7C4 = C13×M4(2)φ: C4/C2C2 ⊆ Aut C521042C52.7C4208,24

׿
×
𝔽