direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C4×C13⋊C4, C13⋊C42, C52⋊2C4, Dic13⋊2C4, D26.4C22, D13.(C2×C4), C26.3(C2×C4), (C4×D13).6C2, C2.2(C2×C13⋊C4), (C2×C13⋊C4).2C2, SmallGroup(208,30)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C13 — D13 — D26 — C2×C13⋊C4 — C4×C13⋊C4 |
C13 — C4×C13⋊C4 |
Generators and relations for C4×C13⋊C4
G = < a,b,c | a4=b13=c4=1, ab=ba, ac=ca, cbc-1=b5 >
Character table of C4×C13⋊C4
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 13A | 13B | 13C | 26A | 26B | 26C | 52A | 52B | 52C | 52D | 52E | 52F | |
size | 1 | 1 | 13 | 13 | 1 | 1 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | -i | i | -1 | -i | i | i | -i | -i | i | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -i | -i | i | i | i | -i | linear of order 4 |
ρ6 | 1 | -1 | 1 | -1 | -i | i | i | i | -i | -1 | 1 | -1 | 1 | -i | i | -i | 1 | 1 | 1 | -1 | -1 | -1 | -i | -i | i | i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | -1 | -1 | i | 1 | 1 | i | i | -i | -i | -i | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ8 | 1 | -1 | 1 | -1 | i | -i | i | -i | i | 1 | -1 | 1 | -1 | -i | i | -i | 1 | 1 | 1 | -1 | -1 | -1 | i | i | -i | -i | -i | i | linear of order 4 |
ρ9 | 1 | -1 | -1 | 1 | i | -i | -1 | i | -i | -i | i | i | -i | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | i | i | -i | -i | -i | i | linear of order 4 |
ρ10 | 1 | 1 | -1 | -1 | 1 | 1 | i | -1 | -1 | -i | -i | i | i | -i | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ11 | 1 | -1 | 1 | -1 | -i | i | -i | i | -i | 1 | -1 | 1 | -1 | i | -i | i | 1 | 1 | 1 | -1 | -1 | -1 | -i | -i | i | i | i | -i | linear of order 4 |
ρ12 | 1 | 1 | -1 | -1 | -1 | -1 | -i | 1 | 1 | -i | -i | i | i | i | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ13 | 1 | -1 | -1 | 1 | -i | i | 1 | -i | i | -i | i | i | -i | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -i | -i | i | i | i | -i | linear of order 4 |
ρ14 | 1 | 1 | -1 | -1 | 1 | 1 | -i | -1 | -1 | i | i | -i | -i | i | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ15 | 1 | -1 | 1 | -1 | i | -i | -i | -i | i | -1 | 1 | -1 | 1 | i | -i | i | 1 | 1 | 1 | -1 | -1 | -1 | i | i | -i | -i | -i | i | linear of order 4 |
ρ16 | 1 | -1 | -1 | 1 | i | -i | 1 | i | -i | i | -i | -i | i | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | i | i | -i | -i | -i | i | linear of order 4 |
ρ17 | 4 | 4 | 0 | 0 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | -ζ139-ζ137-ζ136-ζ134 | -ζ1312-ζ138-ζ135-ζ13 | -ζ139-ζ137-ζ136-ζ134 | -ζ1312-ζ138-ζ135-ζ13 | -ζ1311-ζ1310-ζ133-ζ132 | -ζ1311-ζ1310-ζ133-ζ132 | orthogonal lifted from C2×C13⋊C4 |
ρ18 | 4 | 4 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | ζ139+ζ137+ζ136+ζ134 | orthogonal lifted from C13⋊C4 |
ρ19 | 4 | 4 | 0 | 0 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | -ζ1311-ζ1310-ζ133-ζ132 | -ζ139-ζ137-ζ136-ζ134 | -ζ1311-ζ1310-ζ133-ζ132 | -ζ139-ζ137-ζ136-ζ134 | -ζ1312-ζ138-ζ135-ζ13 | -ζ1312-ζ138-ζ135-ζ13 | orthogonal lifted from C2×C13⋊C4 |
ρ20 | 4 | 4 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | ζ1311+ζ1310+ζ133+ζ132 | orthogonal lifted from C13⋊C4 |
ρ21 | 4 | 4 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | ζ1312+ζ138+ζ135+ζ13 | orthogonal lifted from C13⋊C4 |
ρ22 | 4 | 4 | 0 | 0 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | -ζ1312-ζ138-ζ135-ζ13 | -ζ1311-ζ1310-ζ133-ζ132 | -ζ1312-ζ138-ζ135-ζ13 | -ζ1311-ζ1310-ζ133-ζ132 | -ζ139-ζ137-ζ136-ζ134 | -ζ139-ζ137-ζ136-ζ134 | orthogonal lifted from C2×C13⋊C4 |
ρ23 | 4 | -4 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | -ζ1311-ζ1310-ζ133-ζ132 | -ζ139-ζ137-ζ136-ζ134 | -ζ1312-ζ138-ζ135-ζ13 | ζ43ζ1311+ζ43ζ1310+ζ43ζ133+ζ43ζ132 | ζ43ζ139+ζ43ζ137+ζ43ζ136+ζ43ζ134 | ζ4ζ1311+ζ4ζ1310+ζ4ζ133+ζ4ζ132 | ζ4ζ139+ζ4ζ137+ζ4ζ136+ζ4ζ134 | ζ4ζ1312+ζ4ζ138+ζ4ζ135+ζ4ζ13 | ζ43ζ1312+ζ43ζ138+ζ43ζ135+ζ43ζ13 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | -ζ139-ζ137-ζ136-ζ134 | -ζ1312-ζ138-ζ135-ζ13 | -ζ1311-ζ1310-ζ133-ζ132 | ζ4ζ139+ζ4ζ137+ζ4ζ136+ζ4ζ134 | ζ4ζ1312+ζ4ζ138+ζ4ζ135+ζ4ζ13 | ζ43ζ139+ζ43ζ137+ζ43ζ136+ζ43ζ134 | ζ43ζ1312+ζ43ζ138+ζ43ζ135+ζ43ζ13 | ζ43ζ1311+ζ43ζ1310+ζ43ζ133+ζ43ζ132 | ζ4ζ1311+ζ4ζ1310+ζ4ζ133+ζ4ζ132 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | -ζ1312-ζ138-ζ135-ζ13 | -ζ1311-ζ1310-ζ133-ζ132 | -ζ139-ζ137-ζ136-ζ134 | ζ43ζ1312+ζ43ζ138+ζ43ζ135+ζ43ζ13 | ζ43ζ1311+ζ43ζ1310+ζ43ζ133+ζ43ζ132 | ζ4ζ1312+ζ4ζ138+ζ4ζ135+ζ4ζ13 | ζ4ζ1311+ζ4ζ1310+ζ4ζ133+ζ4ζ132 | ζ4ζ139+ζ4ζ137+ζ4ζ136+ζ4ζ134 | ζ43ζ139+ζ43ζ137+ζ43ζ136+ζ43ζ134 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | -ζ1311-ζ1310-ζ133-ζ132 | -ζ139-ζ137-ζ136-ζ134 | -ζ1312-ζ138-ζ135-ζ13 | ζ4ζ1311+ζ4ζ1310+ζ4ζ133+ζ4ζ132 | ζ4ζ139+ζ4ζ137+ζ4ζ136+ζ4ζ134 | ζ43ζ1311+ζ43ζ1310+ζ43ζ133+ζ43ζ132 | ζ43ζ139+ζ43ζ137+ζ43ζ136+ζ43ζ134 | ζ43ζ1312+ζ43ζ138+ζ43ζ135+ζ43ζ13 | ζ4ζ1312+ζ4ζ138+ζ4ζ135+ζ4ζ13 | complex faithful |
ρ27 | 4 | -4 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | -ζ139-ζ137-ζ136-ζ134 | -ζ1312-ζ138-ζ135-ζ13 | -ζ1311-ζ1310-ζ133-ζ132 | ζ43ζ139+ζ43ζ137+ζ43ζ136+ζ43ζ134 | ζ43ζ1312+ζ43ζ138+ζ43ζ135+ζ43ζ13 | ζ4ζ139+ζ4ζ137+ζ4ζ136+ζ4ζ134 | ζ4ζ1312+ζ4ζ138+ζ4ζ135+ζ4ζ13 | ζ4ζ1311+ζ4ζ1310+ζ4ζ133+ζ4ζ132 | ζ43ζ1311+ζ43ζ1310+ζ43ζ133+ζ43ζ132 | complex faithful |
ρ28 | 4 | -4 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | -ζ1312-ζ138-ζ135-ζ13 | -ζ1311-ζ1310-ζ133-ζ132 | -ζ139-ζ137-ζ136-ζ134 | ζ4ζ1312+ζ4ζ138+ζ4ζ135+ζ4ζ13 | ζ4ζ1311+ζ4ζ1310+ζ4ζ133+ζ4ζ132 | ζ43ζ1312+ζ43ζ138+ζ43ζ135+ζ43ζ13 | ζ43ζ1311+ζ43ζ1310+ζ43ζ133+ζ43ζ132 | ζ43ζ139+ζ43ζ137+ζ43ζ136+ζ43ζ134 | ζ4ζ139+ζ4ζ137+ζ4ζ136+ζ4ζ134 | complex faithful |
(1 40 14 27)(2 41 15 28)(3 42 16 29)(4 43 17 30)(5 44 18 31)(6 45 19 32)(7 46 20 33)(8 47 21 34)(9 48 22 35)(10 49 23 36)(11 50 24 37)(12 51 25 38)(13 52 26 39)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)
(1 40 14 27)(2 48 26 32)(3 43 25 37)(4 51 24 29)(5 46 23 34)(6 41 22 39)(7 49 21 31)(8 44 20 36)(9 52 19 28)(10 47 18 33)(11 42 17 38)(12 50 16 30)(13 45 15 35)
G:=sub<Sym(52)| (1,40,14,27)(2,41,15,28)(3,42,16,29)(4,43,17,30)(5,44,18,31)(6,45,19,32)(7,46,20,33)(8,47,21,34)(9,48,22,35)(10,49,23,36)(11,50,24,37)(12,51,25,38)(13,52,26,39), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (1,40,14,27)(2,48,26,32)(3,43,25,37)(4,51,24,29)(5,46,23,34)(6,41,22,39)(7,49,21,31)(8,44,20,36)(9,52,19,28)(10,47,18,33)(11,42,17,38)(12,50,16,30)(13,45,15,35)>;
G:=Group( (1,40,14,27)(2,41,15,28)(3,42,16,29)(4,43,17,30)(5,44,18,31)(6,45,19,32)(7,46,20,33)(8,47,21,34)(9,48,22,35)(10,49,23,36)(11,50,24,37)(12,51,25,38)(13,52,26,39), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (1,40,14,27)(2,48,26,32)(3,43,25,37)(4,51,24,29)(5,46,23,34)(6,41,22,39)(7,49,21,31)(8,44,20,36)(9,52,19,28)(10,47,18,33)(11,42,17,38)(12,50,16,30)(13,45,15,35) );
G=PermutationGroup([[(1,40,14,27),(2,41,15,28),(3,42,16,29),(4,43,17,30),(5,44,18,31),(6,45,19,32),(7,46,20,33),(8,47,21,34),(9,48,22,35),(10,49,23,36),(11,50,24,37),(12,51,25,38),(13,52,26,39)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52)], [(1,40,14,27),(2,48,26,32),(3,43,25,37),(4,51,24,29),(5,46,23,34),(6,41,22,39),(7,49,21,31),(8,44,20,36),(9,52,19,28),(10,47,18,33),(11,42,17,38),(12,50,16,30),(13,45,15,35)]])
C4×C13⋊C4 is a maximal subgroup of
C104⋊C4 Dic26⋊C4 D52⋊C4 D26.C23
C4×C13⋊C4 is a maximal quotient of C104⋊C4 C26.C42 D26.Q8
Matrix representation of C4×C13⋊C4 ►in GL4(𝔽5) generated by
2 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 2 |
2 | 0 | 0 | 3 |
2 | 0 | 3 | 0 |
0 | 0 | 3 | 3 |
1 | 1 | 1 | 2 |
4 | 1 | 2 | 0 |
0 | 2 | 0 | 4 |
0 | 4 | 4 | 0 |
0 | 3 | 4 | 0 |
G:=sub<GL(4,GF(5))| [2,0,0,0,0,2,0,0,0,0,2,0,0,0,0,2],[2,2,0,1,0,0,0,1,0,3,3,1,3,0,3,2],[4,0,0,0,1,2,4,3,2,0,4,4,0,4,0,0] >;
C4×C13⋊C4 in GAP, Magma, Sage, TeX
C_4\times C_{13}\rtimes C_4
% in TeX
G:=Group("C4xC13:C4");
// GroupNames label
G:=SmallGroup(208,30);
// by ID
G=gap.SmallGroup(208,30);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-13,20,46,3204,1214]);
// Polycyclic
G:=Group<a,b,c|a^4=b^13=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^5>;
// generators/relations
Export
Subgroup lattice of C4×C13⋊C4 in TeX
Character table of C4×C13⋊C4 in TeX