d | ρ | Label | ID | ||
---|---|---|---|---|---|
Dic3xC3xC6 | 72 | Dic3xC3xC6 | 216,138 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C3:1(C6xDic3) = C3xS3xDic3 | φ: C6xDic3/C3xDic3 → C2 ⊆ Aut C3 | 24 | 4 | C3:1(C6xDic3) | 216,119 |
C3:2(C6xDic3) = C6xC3:Dic3 | φ: C6xDic3/C62 → C2 ⊆ Aut C3 | 72 | C3:2(C6xDic3) | 216,143 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C3.1(C6xDic3) = C6xDic9 | φ: C6xDic3/C62 → C2 ⊆ Aut C3 | 72 | C3.1(C6xDic3) | 216,55 | |
C3.2(C6xDic3) = C2xC32:C12 | φ: C6xDic3/C62 → C2 ⊆ Aut C3 | 72 | C3.2(C6xDic3) | 216,59 | |
C3.3(C6xDic3) = C2xC9:C12 | φ: C6xDic3/C62 → C2 ⊆ Aut C3 | 72 | C3.3(C6xDic3) | 216,61 | |
C3.4(C6xDic3) = Dic3xC18 | central extension (φ=1) | 72 | C3.4(C6xDic3) | 216,56 |