Extensions 1→N→G→Q→1 with N=C3 and Q=C6×Dic3

Direct product G=N×Q with N=C3 and Q=C6×Dic3
dρLabelID
Dic3×C3×C672Dic3xC3xC6216,138

Semidirect products G=N:Q with N=C3 and Q=C6×Dic3
extensionφ:Q→Aut NdρLabelID
C31(C6×Dic3) = C3×S3×Dic3φ: C6×Dic3/C3×Dic3C2 ⊆ Aut C3244C3:1(C6xDic3)216,119
C32(C6×Dic3) = C6×C3⋊Dic3φ: C6×Dic3/C62C2 ⊆ Aut C372C3:2(C6xDic3)216,143

Non-split extensions G=N.Q with N=C3 and Q=C6×Dic3
extensionφ:Q→Aut NdρLabelID
C3.1(C6×Dic3) = C6×Dic9φ: C6×Dic3/C62C2 ⊆ Aut C372C3.1(C6xDic3)216,55
C3.2(C6×Dic3) = C2×C32⋊C12φ: C6×Dic3/C62C2 ⊆ Aut C372C3.2(C6xDic3)216,59
C3.3(C6×Dic3) = C2×C9⋊C12φ: C6×Dic3/C62C2 ⊆ Aut C372C3.3(C6xDic3)216,61
C3.4(C6×Dic3) = Dic3×C18central extension (φ=1)72C3.4(C6xDic3)216,56

׿
×
𝔽