Extensions 1→N→G→Q→1 with N=C3 and Q=C6xDic3

Direct product G=NxQ with N=C3 and Q=C6xDic3
dρLabelID
Dic3xC3xC672Dic3xC3xC6216,138

Semidirect products G=N:Q with N=C3 and Q=C6xDic3
extensionφ:Q→Aut NdρLabelID
C3:1(C6xDic3) = C3xS3xDic3φ: C6xDic3/C3xDic3C2 ⊆ Aut C3244C3:1(C6xDic3)216,119
C3:2(C6xDic3) = C6xC3:Dic3φ: C6xDic3/C62C2 ⊆ Aut C372C3:2(C6xDic3)216,143

Non-split extensions G=N.Q with N=C3 and Q=C6xDic3
extensionφ:Q→Aut NdρLabelID
C3.1(C6xDic3) = C6xDic9φ: C6xDic3/C62C2 ⊆ Aut C372C3.1(C6xDic3)216,55
C3.2(C6xDic3) = C2xC32:C12φ: C6xDic3/C62C2 ⊆ Aut C372C3.2(C6xDic3)216,59
C3.3(C6xDic3) = C2xC9:C12φ: C6xDic3/C62C2 ⊆ Aut C372C3.3(C6xDic3)216,61
C3.4(C6xDic3) = Dic3xC18central extension (φ=1)72C3.4(C6xDic3)216,56

׿
x
:
Z
F
o
wr
Q
<