direct product, metacyclic, supersoluble, monomial
Aliases: C2×C9⋊C12, C18⋊C12, Dic9⋊3C6, C62.2S3, (C2×C18).C6, C9⋊2(C2×C12), (C2×Dic9)⋊C3, C6.19(S3×C6), C18.4(C2×C6), C22.(C9⋊C6), (C3×C6).14D6, (C3×C6).4Dic3, C3.3(C6×Dic3), C6.6(C3×Dic3), C32.(C2×Dic3), (C2×3- 1+2)⋊C4, 3- 1+2⋊2(C2×C4), (C22×3- 1+2).C2, (C2×3- 1+2).4C22, C2.2(C2×C9⋊C6), (C2×C6).14(C3×S3), SmallGroup(216,61)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C9 — C18 — C2×3- 1+2 — C9⋊C12 — C2×C9⋊C12 |
C9 — C2×C9⋊C12 |
Generators and relations for C2×C9⋊C12
G = < a,b,c | a2=b9=c12=1, ab=ba, ac=ca, cbc-1=b5 >
(1 12)(2 9)(3 10)(4 11)(5 23)(6 24)(7 21)(8 22)(13 17)(14 18)(15 19)(16 20)(25 48)(26 37)(27 38)(28 39)(29 40)(30 41)(31 42)(32 43)(33 44)(34 45)(35 46)(36 47)(49 64)(50 65)(51 66)(52 67)(53 68)(54 69)(55 70)(56 71)(57 72)(58 61)(59 62)(60 63)
(1 39 63 18 47 67 6 43 71)(2 68 40 7 64 44 19 72 48)(3 45 69 20 41 61 8 37 65)(4 62 46 5 70 38 17 66 42)(9 53 29 21 49 33 15 57 25)(10 34 54 16 30 58 22 26 50)(11 59 35 23 55 27 13 51 31)(12 28 60 14 36 52 24 32 56)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
G:=sub<Sym(72)| (1,12)(2,9)(3,10)(4,11)(5,23)(6,24)(7,21)(8,22)(13,17)(14,18)(15,19)(16,20)(25,48)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44)(34,45)(35,46)(36,47)(49,64)(50,65)(51,66)(52,67)(53,68)(54,69)(55,70)(56,71)(57,72)(58,61)(59,62)(60,63), (1,39,63,18,47,67,6,43,71)(2,68,40,7,64,44,19,72,48)(3,45,69,20,41,61,8,37,65)(4,62,46,5,70,38,17,66,42)(9,53,29,21,49,33,15,57,25)(10,34,54,16,30,58,22,26,50)(11,59,35,23,55,27,13,51,31)(12,28,60,14,36,52,24,32,56), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)>;
G:=Group( (1,12)(2,9)(3,10)(4,11)(5,23)(6,24)(7,21)(8,22)(13,17)(14,18)(15,19)(16,20)(25,48)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44)(34,45)(35,46)(36,47)(49,64)(50,65)(51,66)(52,67)(53,68)(54,69)(55,70)(56,71)(57,72)(58,61)(59,62)(60,63), (1,39,63,18,47,67,6,43,71)(2,68,40,7,64,44,19,72,48)(3,45,69,20,41,61,8,37,65)(4,62,46,5,70,38,17,66,42)(9,53,29,21,49,33,15,57,25)(10,34,54,16,30,58,22,26,50)(11,59,35,23,55,27,13,51,31)(12,28,60,14,36,52,24,32,56), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72) );
G=PermutationGroup([[(1,12),(2,9),(3,10),(4,11),(5,23),(6,24),(7,21),(8,22),(13,17),(14,18),(15,19),(16,20),(25,48),(26,37),(27,38),(28,39),(29,40),(30,41),(31,42),(32,43),(33,44),(34,45),(35,46),(36,47),(49,64),(50,65),(51,66),(52,67),(53,68),(54,69),(55,70),(56,71),(57,72),(58,61),(59,62),(60,63)], [(1,39,63,18,47,67,6,43,71),(2,68,40,7,64,44,19,72,48),(3,45,69,20,41,61,8,37,65),(4,62,46,5,70,38,17,66,42),(9,53,29,21,49,33,15,57,25),(10,34,54,16,30,58,22,26,50),(11,59,35,23,55,27,13,51,31),(12,28,60,14,36,52,24,32,56)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)]])
C2×C9⋊C12 is a maximal subgroup of
Dic9⋊C12 C36⋊C12 D18⋊C12 C62.27D6 C2×C4×C9⋊C6 Dic18⋊2C6
C2×C9⋊C12 is a maximal quotient of C36.C12 C36⋊C12 C62.27D6
40 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | ··· | 6I | 9A | 9B | 9C | 12A | ··· | 12H | 18A | ··· | 18I |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | ··· | 6 | 9 | 9 | 9 | 12 | ··· | 12 | 18 | ··· | 18 |
size | 1 | 1 | 1 | 1 | 2 | 3 | 3 | 9 | 9 | 9 | 9 | 2 | 2 | 2 | 3 | ··· | 3 | 6 | 6 | 6 | 9 | ··· | 9 | 6 | ··· | 6 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 |
type | + | + | + | + | - | + | + | - | + | ||||||||
image | C1 | C2 | C2 | C3 | C4 | C6 | C6 | C12 | S3 | Dic3 | D6 | C3×S3 | C3×Dic3 | S3×C6 | C9⋊C6 | C9⋊C12 | C2×C9⋊C6 |
kernel | C2×C9⋊C12 | C9⋊C12 | C22×3- 1+2 | C2×Dic9 | C2×3- 1+2 | Dic9 | C2×C18 | C18 | C62 | C3×C6 | C3×C6 | C2×C6 | C6 | C6 | C22 | C2 | C2 |
# reps | 1 | 2 | 1 | 2 | 4 | 4 | 2 | 8 | 1 | 2 | 1 | 2 | 4 | 2 | 1 | 2 | 1 |
Matrix representation of C2×C9⋊C12 ►in GL8(𝔽37)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 36 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 36 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 36 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 36 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 36 |
36 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
36 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 26 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 26 | 0 |
29 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 26 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 |
0 | 0 | 36 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 27 | 0 | 0 | 0 |
G:=sub<GL(8,GF(37))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,36],[36,36,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,10,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,26,0,0,0,0,0,0,0,0,26,0,0,0,0,0,1,0,0],[29,0,0,0,0,0,0,0,8,8,0,0,0,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,27,0,0,1,0,0,0,0,0,0,0,0,26,0,0,0,0,0,0,0,0,10,0,0,0] >;
C2×C9⋊C12 in GAP, Magma, Sage, TeX
C_2\times C_9\rtimes C_{12}
% in TeX
G:=Group("C2xC9:C12");
// GroupNames label
G:=SmallGroup(216,61);
// by ID
G=gap.SmallGroup(216,61);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,-3,-3,72,3604,736,208,5189]);
// Polycyclic
G:=Group<a,b,c|a^2=b^9=c^12=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^5>;
// generators/relations
Export