Extensions 1→N→G→Q→1 with N=C3 and Q=C3xC3:D4

Direct product G=NxQ with N=C3 and Q=C3xC3:D4
dρLabelID
C32xC3:D436C3^2xC3:D4216,139

Semidirect products G=N:Q with N=C3 and Q=C3xC3:D4
extensionφ:Q→Aut NdρLabelID
C3:1(C3xC3:D4) = C3xC3:D12φ: C3xC3:D4/C3xDic3C2 ⊆ Aut C3244C3:1(C3xC3:D4)216,122
C3:2(C3xC3:D4) = C3xD6:S3φ: C3xC3:D4/S3xC6C2 ⊆ Aut C3244C3:2(C3xC3:D4)216,121
C3:3(C3xC3:D4) = C3xC32:7D4φ: C3xC3:D4/C62C2 ⊆ Aut C336C3:3(C3xC3:D4)216,144

Non-split extensions G=N.Q with N=C3 and Q=C3xC3:D4
extensionφ:Q→Aut NdρLabelID
C3.1(C3xC3:D4) = C3xC9:D4φ: C3xC3:D4/C62C2 ⊆ Aut C3362C3.1(C3xC3:D4)216,57
C3.2(C3xC3:D4) = He3:6D4φ: C3xC3:D4/C62C2 ⊆ Aut C3366C3.2(C3xC3:D4)216,60
C3.3(C3xC3:D4) = Dic9:C6φ: C3xC3:D4/C62C2 ⊆ Aut C3366C3.3(C3xC3:D4)216,62
C3.4(C3xC3:D4) = C9xC3:D4central extension (φ=1)362C3.4(C3xC3:D4)216,58

׿
x
:
Z
F
o
wr
Q
<