Extensions 1→N→G→Q→1 with N=C3 and Q=C3×C3⋊D4

Direct product G=N×Q with N=C3 and Q=C3×C3⋊D4
dρLabelID
C32×C3⋊D436C3^2xC3:D4216,139

Semidirect products G=N:Q with N=C3 and Q=C3×C3⋊D4
extensionφ:Q→Aut NdρLabelID
C31(C3×C3⋊D4) = C3×C3⋊D12φ: C3×C3⋊D4/C3×Dic3C2 ⊆ Aut C3244C3:1(C3xC3:D4)216,122
C32(C3×C3⋊D4) = C3×D6⋊S3φ: C3×C3⋊D4/S3×C6C2 ⊆ Aut C3244C3:2(C3xC3:D4)216,121
C33(C3×C3⋊D4) = C3×C327D4φ: C3×C3⋊D4/C62C2 ⊆ Aut C336C3:3(C3xC3:D4)216,144

Non-split extensions G=N.Q with N=C3 and Q=C3×C3⋊D4
extensionφ:Q→Aut NdρLabelID
C3.1(C3×C3⋊D4) = C3×C9⋊D4φ: C3×C3⋊D4/C62C2 ⊆ Aut C3362C3.1(C3xC3:D4)216,57
C3.2(C3×C3⋊D4) = He36D4φ: C3×C3⋊D4/C62C2 ⊆ Aut C3366C3.2(C3xC3:D4)216,60
C3.3(C3×C3⋊D4) = Dic9⋊C6φ: C3×C3⋊D4/C62C2 ⊆ Aut C3366C3.3(C3xC3:D4)216,62
C3.4(C3×C3⋊D4) = C9×C3⋊D4central extension (φ=1)362C3.4(C3xC3:D4)216,58

׿
×
𝔽