direct product, metabelian, supersoluble, monomial
Aliases: C9×C3⋊D4, D6⋊2C18, Dic3⋊C18, C18.23D6, C62.11C6, (C3×C9)⋊7D4, C3⋊2(D4×C9), (C2×C6)⋊4C18, (C2×C18)⋊3S3, (C6×C18)⋊1C2, (S3×C18)⋊2C2, (S3×C6).2C6, C2.5(S3×C18), C6.33(S3×C6), C6.5(C2×C18), C22⋊3(S3×C9), (C9×Dic3)⋊4C2, C32.3(C3×D4), (C3×Dic3).3C6, (C3×C18).12C22, (C3×C3⋊D4).C3, (C2×C6).9(C3×S3), C3.4(C3×C3⋊D4), (C3×C6).22(C2×C6), SmallGroup(216,58)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C9×C3⋊D4
G = < a,b,c,d | a9=b3=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >
Subgroups: 110 in 58 conjugacy classes, 27 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, D4, C9, C9, C32, Dic3, C12, D6, C2×C6, C2×C6, C18, C18, C3×S3, C3×C6, C3×C6, C3⋊D4, C3×D4, C3×C9, C36, C2×C18, C2×C18, C3×Dic3, S3×C6, C62, S3×C9, C3×C18, C3×C18, D4×C9, C3×C3⋊D4, C9×Dic3, S3×C18, C6×C18, C9×C3⋊D4
Quotients: C1, C2, C3, C22, S3, C6, D4, C9, D6, C2×C6, C18, C3×S3, C3⋊D4, C3×D4, C2×C18, S3×C6, S3×C9, D4×C9, C3×C3⋊D4, S3×C18, C9×C3⋊D4
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
(1 7 4)(2 8 5)(3 9 6)(10 13 16)(11 14 17)(12 15 18)(19 25 22)(20 26 23)(21 27 24)(28 31 34)(29 32 35)(30 33 36)
(1 14 23 34)(2 15 24 35)(3 16 25 36)(4 17 26 28)(5 18 27 29)(6 10 19 30)(7 11 20 31)(8 12 21 32)(9 13 22 33)
(1 34)(2 35)(3 36)(4 28)(5 29)(6 30)(7 31)(8 32)(9 33)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 25)(17 26)(18 27)
G:=sub<Sym(36)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,7,4)(2,8,5)(3,9,6)(10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24)(28,31,34)(29,32,35)(30,33,36), (1,14,23,34)(2,15,24,35)(3,16,25,36)(4,17,26,28)(5,18,27,29)(6,10,19,30)(7,11,20,31)(8,12,21,32)(9,13,22,33), (1,34)(2,35)(3,36)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)>;
G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,7,4)(2,8,5)(3,9,6)(10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24)(28,31,34)(29,32,35)(30,33,36), (1,14,23,34)(2,15,24,35)(3,16,25,36)(4,17,26,28)(5,18,27,29)(6,10,19,30)(7,11,20,31)(8,12,21,32)(9,13,22,33), (1,34)(2,35)(3,36)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)], [(1,7,4),(2,8,5),(3,9,6),(10,13,16),(11,14,17),(12,15,18),(19,25,22),(20,26,23),(21,27,24),(28,31,34),(29,32,35),(30,33,36)], [(1,14,23,34),(2,15,24,35),(3,16,25,36),(4,17,26,28),(5,18,27,29),(6,10,19,30),(7,11,20,31),(8,12,21,32),(9,13,22,33)], [(1,34),(2,35),(3,36),(4,28),(5,29),(6,30),(7,31),(8,32),(9,33),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,25),(17,26),(18,27)]])
C9×C3⋊D4 is a maximal subgroup of
Dic3.D18 D18.4D6 D18⋊D6 S3×D4×C9
81 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 4 | 6A | 6B | 6C | ··· | 6M | 6N | 6O | 9A | ··· | 9F | 9G | ··· | 9L | 12A | 12B | 18A | ··· | 18F | 18G | ··· | 18AD | 18AE | ··· | 18AJ | 36A | ··· | 36F |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 12 | 12 | 18 | ··· | 18 | 18 | ··· | 18 | 18 | ··· | 18 | 36 | ··· | 36 |
size | 1 | 1 | 2 | 6 | 1 | 1 | 2 | 2 | 2 | 6 | 1 | 1 | 2 | ··· | 2 | 6 | 6 | 1 | ··· | 1 | 2 | ··· | 2 | 6 | 6 | 1 | ··· | 1 | 2 | ··· | 2 | 6 | ··· | 6 | 6 | ··· | 6 |
81 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | |||||||||||||||||
image | C1 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C9 | C18 | C18 | C18 | S3 | D4 | D6 | C3×S3 | C3⋊D4 | C3×D4 | S3×C6 | S3×C9 | D4×C9 | C3×C3⋊D4 | S3×C18 | C9×C3⋊D4 |
kernel | C9×C3⋊D4 | C9×Dic3 | S3×C18 | C6×C18 | C3×C3⋊D4 | C3×Dic3 | S3×C6 | C62 | C3⋊D4 | Dic3 | D6 | C2×C6 | C2×C18 | C3×C9 | C18 | C2×C6 | C9 | C32 | C6 | C22 | C3 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 6 | 6 | 4 | 6 | 12 |
Matrix representation of C9×C3⋊D4 ►in GL2(𝔽19) generated by
17 | 0 |
0 | 17 |
9 | 2 |
2 | 9 |
0 | 1 |
18 | 0 |
18 | 0 |
0 | 1 |
G:=sub<GL(2,GF(19))| [17,0,0,17],[9,2,2,9],[0,18,1,0],[18,0,0,1] >;
C9×C3⋊D4 in GAP, Magma, Sage, TeX
C_9\times C_3\rtimes D_4
% in TeX
G:=Group("C9xC3:D4");
// GroupNames label
G:=SmallGroup(216,58);
// by ID
G=gap.SmallGroup(216,58);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,-3,-3,169,122,5189]);
// Polycyclic
G:=Group<a,b,c,d|a^9=b^3=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations