Extensions 1→N→G→Q→1 with N=C4×D13 and Q=C2

Direct product G=N×Q with N=C4×D13 and Q=C2
dρLabelID
C2×C4×D13104C2xC4xD13208,36

Semidirect products G=N:Q with N=C4×D13 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D13)⋊1C2 = D4×D13φ: C2/C1C2 ⊆ Out C4×D13524+(C4xD13):1C2208,39
(C4×D13)⋊2C2 = D42D13φ: C2/C1C2 ⊆ Out C4×D131044-(C4xD13):2C2208,40
(C4×D13)⋊3C2 = D52⋊C2φ: C2/C1C2 ⊆ Out C4×D131044+(C4xD13):3C2208,42
(C4×D13)⋊4C2 = D525C2φ: C2/C1C2 ⊆ Out C4×D131042(C4xD13):4C2208,38

Non-split extensions G=N.Q with N=C4×D13 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D13).1C2 = Q8×D13φ: C2/C1C2 ⊆ Out C4×D131044-(C4xD13).1C2208,41
(C4×D13).2C2 = C8⋊D13φ: C2/C1C2 ⊆ Out C4×D131042(C4xD13).2C2208,5
(C4×D13).3C2 = C52.C4φ: C2/C1C2 ⊆ Out C4×D131044(C4xD13).3C2208,29
(C4×D13).4C2 = C52⋊C4φ: C2/C1C2 ⊆ Out C4×D13524(C4xD13).4C2208,31
(C4×D13).5C2 = D13⋊C8φ: C2/C1C2 ⊆ Out C4×D131044(C4xD13).5C2208,28
(C4×D13).6C2 = C4×C13⋊C4φ: C2/C1C2 ⊆ Out C4×D13524(C4xD13).6C2208,30
(C4×D13).7C2 = C8×D13φ: trivial image1042(C4xD13).7C2208,4

׿
×
𝔽