Extensions 1→N→G→Q→1 with N=C2×C10 and Q=D5

Direct product G=N×Q with N=C2×C10 and Q=D5
dρLabelID
D5×C2×C1040D5xC2xC10200,50

Semidirect products G=N:Q with N=C2×C10 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C2×C10)⋊1D5 = C5×C5⋊D4φ: D5/C5C2 ⊆ Aut C2×C10202(C2xC10):1D5200,31
(C2×C10)⋊2D5 = C527D4φ: D5/C5C2 ⊆ Aut C2×C10100(C2xC10):2D5200,36
(C2×C10)⋊3D5 = C22×C5⋊D5φ: D5/C5C2 ⊆ Aut C2×C10100(C2xC10):3D5200,51

Non-split extensions G=N.Q with N=C2×C10 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C2×C10).1D5 = C2×Dic25φ: D5/C5C2 ⊆ Aut C2×C10200(C2xC10).1D5200,7
(C2×C10).2D5 = C25⋊D4φ: D5/C5C2 ⊆ Aut C2×C101002(C2xC10).2D5200,8
(C2×C10).3D5 = C22×D25φ: D5/C5C2 ⊆ Aut C2×C10100(C2xC10).3D5200,13
(C2×C10).4D5 = C2×C526C4φ: D5/C5C2 ⊆ Aut C2×C10200(C2xC10).4D5200,35
(C2×C10).5D5 = C10×Dic5central extension (φ=1)40(C2xC10).5D5200,30

׿
×
𝔽