direct product, metabelian, supersoluble, monomial, A-group
Aliases: D5×C2×C10, C102⋊4C2, C52⋊2C23, C10⋊(C2×C10), C5⋊(C22×C10), (C2×C10)⋊3C10, (C5×C10)⋊2C22, SmallGroup(200,50)
Series: Derived ►Chief ►Lower central ►Upper central
C5 — D5×C2×C10 |
Generators and relations for D5×C2×C10
G = < a,b,c,d | a2=b10=c5=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 172 in 74 conjugacy classes, 42 normal (10 characteristic)
C1, C2, C2, C22, C22, C5, C5, C23, D5, C10, C10, D10, C2×C10, C2×C10, C52, C22×D5, C22×C10, C5×D5, C5×C10, D5×C10, C102, D5×C2×C10
Quotients: C1, C2, C22, C5, C23, D5, C10, D10, C2×C10, C22×D5, C22×C10, C5×D5, D5×C10, D5×C2×C10
(1 12)(2 13)(3 14)(4 15)(5 16)(6 17)(7 18)(8 19)(9 20)(10 11)(21 36)(22 37)(23 38)(24 39)(25 40)(26 31)(27 32)(28 33)(29 34)(30 35)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(1 9 7 5 3)(2 10 8 6 4)(11 19 17 15 13)(12 20 18 16 14)(21 23 25 27 29)(22 24 26 28 30)(31 33 35 37 39)(32 34 36 38 40)
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 21)(8 22)(9 23)(10 24)(11 39)(12 40)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)(19 37)(20 38)
G:=sub<Sym(40)| (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,11)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,9,7,5,3)(2,10,8,6,4)(11,19,17,15,13)(12,20,18,16,14)(21,23,25,27,29)(22,24,26,28,30)(31,33,35,37,39)(32,34,36,38,40), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,21)(8,22)(9,23)(10,24)(11,39)(12,40)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)>;
G:=Group( (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,11)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,9,7,5,3)(2,10,8,6,4)(11,19,17,15,13)(12,20,18,16,14)(21,23,25,27,29)(22,24,26,28,30)(31,33,35,37,39)(32,34,36,38,40), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,21)(8,22)(9,23)(10,24)(11,39)(12,40)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38) );
G=PermutationGroup([[(1,12),(2,13),(3,14),(4,15),(5,16),(6,17),(7,18),(8,19),(9,20),(10,11),(21,36),(22,37),(23,38),(24,39),(25,40),(26,31),(27,32),(28,33),(29,34),(30,35)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(1,9,7,5,3),(2,10,8,6,4),(11,19,17,15,13),(12,20,18,16,14),(21,23,25,27,29),(22,24,26,28,30),(31,33,35,37,39),(32,34,36,38,40)], [(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,21),(8,22),(9,23),(10,24),(11,39),(12,40),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36),(19,37),(20,38)]])
D5×C2×C10 is a maximal subgroup of
D10⋊Dic5 D10.D10
80 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 5A | 5B | 5C | 5D | 5E | ··· | 5N | 10A | ··· | 10L | 10M | ··· | 10AP | 10AQ | ··· | 10BF |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 5 | 5 | 5 | 5 | 5 | ··· | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 10 | ··· | 10 |
size | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 5 | ··· | 5 |
80 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C5 | C10 | C10 | D5 | D10 | C5×D5 | D5×C10 |
kernel | D5×C2×C10 | D5×C10 | C102 | C22×D5 | D10 | C2×C10 | C2×C10 | C10 | C22 | C2 |
# reps | 1 | 6 | 1 | 4 | 24 | 4 | 2 | 6 | 8 | 24 |
Matrix representation of D5×C2×C10 ►in GL3(𝔽11) generated by
1 | 0 | 0 |
0 | 10 | 0 |
0 | 0 | 10 |
7 | 0 | 0 |
0 | 5 | 0 |
0 | 0 | 5 |
1 | 0 | 0 |
0 | 4 | 6 |
0 | 0 | 3 |
10 | 0 | 0 |
0 | 7 | 5 |
0 | 8 | 4 |
G:=sub<GL(3,GF(11))| [1,0,0,0,10,0,0,0,10],[7,0,0,0,5,0,0,0,5],[1,0,0,0,4,0,0,6,3],[10,0,0,0,7,8,0,5,4] >;
D5×C2×C10 in GAP, Magma, Sage, TeX
D_5\times C_2\times C_{10}
% in TeX
G:=Group("D5xC2xC10");
// GroupNames label
G:=SmallGroup(200,50);
// by ID
G=gap.SmallGroup(200,50);
# by ID
G:=PCGroup([5,-2,-2,-2,-5,-5,4004]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^10=c^5=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations