Extensions 1→N→G→Q→1 with N=C10 and Q=C2×C10

Direct product G=N×Q with N=C10 and Q=C2×C10
dρLabelID
C2×C102200C2xC10^2200,52

Semidirect products G=N:Q with N=C10 and Q=C2×C10
extensionφ:Q→Aut NdρLabelID
C10⋊(C2×C10) = D5×C2×C10φ: C2×C10/C10C2 ⊆ Aut C1040C10:(C2xC10)200,50

Non-split extensions G=N.Q with N=C10 and Q=C2×C10
extensionφ:Q→Aut NdρLabelID
C10.1(C2×C10) = C5×Dic10φ: C2×C10/C10C2 ⊆ Aut C10402C10.1(C2xC10)200,27
C10.2(C2×C10) = D5×C20φ: C2×C10/C10C2 ⊆ Aut C10402C10.2(C2xC10)200,28
C10.3(C2×C10) = C5×D20φ: C2×C10/C10C2 ⊆ Aut C10402C10.3(C2xC10)200,29
C10.4(C2×C10) = C10×Dic5φ: C2×C10/C10C2 ⊆ Aut C1040C10.4(C2xC10)200,30
C10.5(C2×C10) = C5×C5⋊D4φ: C2×C10/C10C2 ⊆ Aut C10202C10.5(C2xC10)200,31
C10.6(C2×C10) = D4×C25central extension (φ=1)1002C10.6(C2xC10)200,10
C10.7(C2×C10) = Q8×C25central extension (φ=1)2002C10.7(C2xC10)200,11
C10.8(C2×C10) = D4×C52central extension (φ=1)100C10.8(C2xC10)200,38
C10.9(C2×C10) = Q8×C52central extension (φ=1)200C10.9(C2xC10)200,39

׿
×
𝔽