Extensions 1→N→G→Q→1 with N=C3⋊S3 and Q=D6

Direct product G=N×Q with N=C3⋊S3 and Q=D6
dρLabelID
C2×S3×C3⋊S336C2xS3xC3:S3216,171

Semidirect products G=N:Q with N=C3⋊S3 and Q=D6
extensionφ:Q→Out NdρLabelID
C3⋊S3⋊D6 = C2×C32⋊D6φ: D6/C2S3 ⊆ Out C3⋊S3186+C3:S3:D6216,102
C3⋊S32D6 = S33φ: D6/S3C2 ⊆ Out C3⋊S3128+C3:S3:2D6216,162
C3⋊S33D6 = C2×C324D6φ: D6/C6C2 ⊆ Out C3⋊S3244C3:S3:3D6216,172

Non-split extensions G=N.Q with N=C3⋊S3 and Q=D6
extensionφ:Q→Out NdρLabelID
C3⋊S3.1D6 = C33⋊D4φ: D6/C3C22 ⊆ Out C3⋊S3124C3:S3.1D6216,158
C3⋊S3.2D6 = C322D12φ: D6/C3C22 ⊆ Out C3⋊S3128+C3:S3.2D6216,159
C3⋊S3.3D6 = C33⋊Q8φ: D6/C3C22 ⊆ Out C3⋊S3248C3:S3.3D6216,161
C3⋊S3.4D6 = S3×C32⋊C4φ: D6/S3C2 ⊆ Out C3⋊S3128+C3:S3.4D6216,156
C3⋊S3.5D6 = C2×C33⋊C4φ: D6/C6C2 ⊆ Out C3⋊S3244C3:S3.5D6216,169

׿
×
𝔽