Copied to
clipboard

G = C2xS3xC3:S3order 216 = 23·33

Direct product of C2, S3 and C3:S3

direct product, metabelian, supersoluble, monomial, A-group, rational

Aliases: C2xS3xC3:S3, C33:3C23, C6:1S32, (C3xC6):4D6, (S3xC6):5S3, (C3xS3):2D6, (C32xC6):2C22, C32:5(C22xS3), (S3xC32):3C22, C33:C2:2C22, C3:2(C2xS32), C6:1(C2xC3:S3), (S3xC3xC6):8C2, (C6xC3:S3):8C2, C3:1(C22xC3:S3), (C3xC3:S3):3C22, (C2xC33:C2):5C2, SmallGroup(216,171)

Series: Derived Chief Lower central Upper central

C1C33 — C2xS3xC3:S3
C1C3C32C33S3xC32S3xC3:S3 — C2xS3xC3:S3
C33 — C2xS3xC3:S3
C1C2

Generators and relations for C2xS3xC3:S3
 G = < a,b,c,d,e,f | a2=b3=c2=d3=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, fdf=d-1, fef=e-1 >

Subgroups: 1252 in 232 conjugacy classes, 56 normal (14 characteristic)
C1, C2, C2, C3, C3, C3, C22, S3, S3, C6, C6, C6, C23, C32, C32, C32, D6, D6, C2xC6, C3xS3, C3xS3, C3:S3, C3:S3, C3xC6, C3xC6, C3xC6, C22xS3, C33, S32, S3xC6, S3xC6, C2xC3:S3, C2xC3:S3, C62, S3xC32, C3xC3:S3, C33:C2, C32xC6, C2xS32, C22xC3:S3, S3xC3:S3, S3xC3xC6, C6xC3:S3, C2xC33:C2, C2xS3xC3:S3
Quotients: C1, C2, C22, S3, C23, D6, C3:S3, C22xS3, S32, C2xC3:S3, C2xS32, C22xC3:S3, S3xC3:S3, C2xS3xC3:S3

Smallest permutation representation of C2xS3xC3:S3
On 36 points
Generators in S36
(1 10)(2 11)(3 12)(4 13)(5 14)(6 15)(7 16)(8 17)(9 18)(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)(25 34)(26 35)(27 36)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)
(1 28)(2 30)(3 29)(4 34)(5 36)(6 35)(7 31)(8 33)(9 32)(10 19)(11 21)(12 20)(13 25)(14 27)(15 26)(16 22)(17 24)(18 23)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)
(1 9 5)(2 7 6)(3 8 4)(10 18 14)(11 16 15)(12 17 13)(19 23 27)(20 24 25)(21 22 26)(28 32 36)(29 33 34)(30 31 35)
(1 28)(2 29)(3 30)(4 31)(5 32)(6 33)(7 34)(8 35)(9 36)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 25)(17 26)(18 27)

G:=sub<Sym(36)| (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,28)(2,30)(3,29)(4,34)(5,36)(6,35)(7,31)(8,33)(9,32)(10,19)(11,21)(12,20)(13,25)(14,27)(15,26)(16,22)(17,24)(18,23), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36), (1,9,5)(2,7,6)(3,8,4)(10,18,14)(11,16,15)(12,17,13)(19,23,27)(20,24,25)(21,22,26)(28,32,36)(29,33,34)(30,31,35), (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)>;

G:=Group( (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,28)(2,30)(3,29)(4,34)(5,36)(6,35)(7,31)(8,33)(9,32)(10,19)(11,21)(12,20)(13,25)(14,27)(15,26)(16,22)(17,24)(18,23), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36), (1,9,5)(2,7,6)(3,8,4)(10,18,14)(11,16,15)(12,17,13)(19,23,27)(20,24,25)(21,22,26)(28,32,36)(29,33,34)(30,31,35), (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27) );

G=PermutationGroup([[(1,10),(2,11),(3,12),(4,13),(5,14),(6,15),(7,16),(8,17),(9,18),(19,28),(20,29),(21,30),(22,31),(23,32),(24,33),(25,34),(26,35),(27,36)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36)], [(1,28),(2,30),(3,29),(4,34),(5,36),(6,35),(7,31),(8,33),(9,32),(10,19),(11,21),(12,20),(13,25),(14,27),(15,26),(16,22),(17,24),(18,23)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36)], [(1,9,5),(2,7,6),(3,8,4),(10,18,14),(11,16,15),(12,17,13),(19,23,27),(20,24,25),(21,22,26),(28,32,36),(29,33,34),(30,31,35)], [(1,28),(2,29),(3,30),(4,31),(5,32),(6,33),(7,34),(8,35),(9,36),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,25),(17,26),(18,27)]])

C2xS3xC3:S3 is a maximal subgroup of
D6:(C32:C4)  D6:4S32  (S3xC6):D6  C3:S3:4D12  C12:S32  C62:23D6  C2xS33
C2xS3xC3:S3 is a maximal quotient of
(C3xD12):S3  D12:(C3:S3)  C12.39S32  C12.40S32  C32:9(S3xQ8)  C12.73S32  C12.57S32  C12.58S32  C12:S32  C62.90D6  C62.91D6  C62.93D6  C62:23D6

36 conjugacy classes

class 1 2A2B2C2D2E2F2G3A···3E3F3G3H3I6A···6E6F6G6H6I6J···6Q6R6S
order122222223···333336···666666···666
size11339927272···244442···244446···61818

36 irreducible representations

dim111112222244
type++++++++++++
imageC1C2C2C2C2S3S3D6D6D6S32C2xS32
kernelC2xS3xC3:S3S3xC3:S3S3xC3xC6C6xC3:S3C2xC33:C2S3xC6C2xC3:S3C3xS3C3:S3C3xC6C6C3
# reps141114182544

Matrix representation of C2xS3xC3:S3 in GL6(Z)

100000
010000
00-1000
000-100
0000-10
00000-1
,
100000
010000
001000
000100
000001
0000-1-1
,
100000
010000
00-1000
000-100
000010
0000-1-1
,
0-10000
1-10000
001000
000100
000010
000001
,
0-10000
1-10000
00-1100
00-1000
000010
000001
,
010000
100000
000-100
00-1000
000010
000001

G:=sub<GL(6,Integers())| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,1,-1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0,-1],[0,1,0,0,0,0,-1,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,-1,-1,0,0,0,0,0,0,-1,-1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C2xS3xC3:S3 in GAP, Magma, Sage, TeX

C_2\times S_3\times C_3\rtimes S_3
% in TeX

G:=Group("C2xS3xC3:S3");
// GroupNames label

G:=SmallGroup(216,171);
// by ID

G=gap.SmallGroup(216,171);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-3,201,730,5189]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^3=c^2=d^3=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<