Extensions 1→N→G→Q→1 with N=C3⋊Dic3 and Q=S3

Direct product G=N×Q with N=C3⋊Dic3 and Q=S3
dρLabelID
S3×C3⋊Dic372S3xC3:Dic3216,124

Semidirect products G=N:Q with N=C3⋊Dic3 and Q=S3
extensionφ:Q→Out NdρLabelID
C3⋊Dic31S3 = C6.S32φ: S3/C1S3 ⊆ Out C3⋊Dic3366C3:Dic3:1S3216,34
C3⋊Dic32S3 = He3⋊(C2×C4)φ: S3/C1S3 ⊆ Out C3⋊Dic3366-C3:Dic3:2S3216,36
C3⋊Dic33S3 = He33D4φ: S3/C1S3 ⊆ Out C3⋊Dic3366C3:Dic3:3S3216,37
C3⋊Dic34S3 = C337D4φ: S3/C3C2 ⊆ Out C3⋊Dic336C3:Dic3:4S3216,128
C3⋊Dic35S3 = C339(C2×C4)φ: S3/C3C2 ⊆ Out C3⋊Dic3244C3:Dic3:5S3216,131
C3⋊Dic36S3 = C339D4φ: S3/C3C2 ⊆ Out C3⋊Dic3244C3:Dic3:6S3216,132
C3⋊Dic37S3 = C338(C2×C4)φ: trivial image36C3:Dic3:7S3216,126

Non-split extensions G=N.Q with N=C3⋊Dic3 and Q=S3
extensionφ:Q→Out NdρLabelID
C3⋊Dic3.S3 = He32Q8φ: S3/C1S3 ⊆ Out C3⋊Dic3726-C3:Dic3.S3216,33
C3⋊Dic3.2S3 = C334C8φ: S3/C3C2 ⊆ Out C3⋊Dic3244C3:Dic3.2S3216,118
C3⋊Dic3.3S3 = C334Q8φ: S3/C3C2 ⊆ Out C3⋊Dic372C3:Dic3.3S3216,130
C3⋊Dic3.4S3 = C335Q8φ: S3/C3C2 ⊆ Out C3⋊Dic3244C3:Dic3.4S3216,133

׿
×
𝔽