non-abelian, supersoluble, monomial
Aliases: He3⋊3D4, C32⋊D12, C6.20S32, (C3×C6).5D6, C3⋊Dic3⋊3S3, C32⋊C12⋊1C2, C32⋊2(C3⋊D4), C2.5(C32⋊D6), C3.3(C3⋊D12), (C2×He3).5C22, (C2×C3⋊S3)⋊2S3, (C2×C32⋊C6)⋊2C2, (C2×He3⋊C2)⋊1C2, SmallGroup(216,37)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for He3⋊3D4
G = < a,b,c,d,e | a3=b3=c3=d4=e2=1, ab=ba, cac-1=ab-1, ad=da, eae=a-1, bc=cb, dbd-1=b-1, be=eb, dcd-1=ece=c-1, ede=d-1 >
Subgroups: 368 in 66 conjugacy classes, 16 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, D4, C32, C32, Dic3, C12, D6, C2×C6, C3×S3, C3⋊S3, C3×C6, C3×C6, D12, C3⋊D4, He3, C3×Dic3, C3⋊Dic3, S3×C6, C2×C3⋊S3, C32⋊C6, He3⋊C2, C2×He3, D6⋊S3, C3⋊D12, C32⋊C12, C2×C32⋊C6, C2×He3⋊C2, He3⋊3D4
Quotients: C1, C2, C22, S3, D4, D6, D12, C3⋊D4, S32, C3⋊D12, C32⋊D6, He3⋊3D4
Character table of He3⋊3D4
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 4 | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 12A | 12B | |
size | 1 | 1 | 18 | 18 | 2 | 6 | 6 | 12 | 18 | 2 | 6 | 6 | 12 | 18 | 18 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 0 | 2 | 2 | -1 | 2 | -1 | 0 | 2 | -1 | 2 | -1 | 0 | -1 | -1 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 0 | 0 | 2 | 2 | -1 | -1 | -2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | orthogonal lifted from D6 |
ρ8 | 2 | 2 | 0 | 0 | 2 | 2 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from S3 |
ρ9 | 2 | 2 | 0 | -2 | 2 | -1 | 2 | -1 | 0 | 2 | -1 | 2 | -1 | 0 | 1 | 1 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ10 | 2 | -2 | 0 | 0 | 2 | 2 | -1 | -1 | 0 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | √3 | -√3 | orthogonal lifted from D12 |
ρ11 | 2 | -2 | 0 | 0 | 2 | 2 | -1 | -1 | 0 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | -√3 | √3 | orthogonal lifted from D12 |
ρ12 | 2 | -2 | 0 | 0 | 2 | -1 | 2 | -1 | 0 | -2 | 1 | -2 | 1 | 0 | -√-3 | √-3 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ13 | 2 | -2 | 0 | 0 | 2 | -1 | 2 | -1 | 0 | -2 | 1 | -2 | 1 | 0 | √-3 | -√-3 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ14 | 4 | -4 | 0 | 0 | 4 | -2 | -2 | 1 | 0 | -4 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C3⋊D12 |
ρ15 | 4 | 4 | 0 | 0 | 4 | -2 | -2 | 1 | 0 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ16 | 6 | 6 | 2 | 0 | -3 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | 0 | 0 | orthogonal lifted from C32⋊D6 |
ρ17 | 6 | 6 | -2 | 0 | -3 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | orthogonal lifted from C32⋊D6 |
ρ18 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | -√-3 | 0 | 0 | √-3 | 0 | 0 | complex faithful |
ρ19 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | √-3 | 0 | 0 | -√-3 | 0 | 0 | complex faithful |
(1 16 7)(2 13 8)(3 14 5)(4 15 6)(9 29 18)(10 30 19)(11 31 20)(12 32 17)(21 27 33)(22 28 34)(23 25 35)(24 26 36)
(1 21 29)(2 30 22)(3 23 31)(4 32 24)(5 35 11)(6 12 36)(7 33 9)(8 10 34)(13 19 28)(14 25 20)(15 17 26)(16 27 18)
(5 11 35)(6 36 12)(7 9 33)(8 34 10)(13 19 28)(14 25 20)(15 17 26)(16 27 18)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)
(1 4)(2 3)(5 13)(6 16)(7 15)(8 14)(9 26)(10 25)(11 28)(12 27)(17 33)(18 36)(19 35)(20 34)(21 32)(22 31)(23 30)(24 29)
G:=sub<Sym(36)| (1,16,7)(2,13,8)(3,14,5)(4,15,6)(9,29,18)(10,30,19)(11,31,20)(12,32,17)(21,27,33)(22,28,34)(23,25,35)(24,26,36), (1,21,29)(2,30,22)(3,23,31)(4,32,24)(5,35,11)(6,12,36)(7,33,9)(8,10,34)(13,19,28)(14,25,20)(15,17,26)(16,27,18), (5,11,35)(6,36,12)(7,9,33)(8,34,10)(13,19,28)(14,25,20)(15,17,26)(16,27,18), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,4)(2,3)(5,13)(6,16)(7,15)(8,14)(9,26)(10,25)(11,28)(12,27)(17,33)(18,36)(19,35)(20,34)(21,32)(22,31)(23,30)(24,29)>;
G:=Group( (1,16,7)(2,13,8)(3,14,5)(4,15,6)(9,29,18)(10,30,19)(11,31,20)(12,32,17)(21,27,33)(22,28,34)(23,25,35)(24,26,36), (1,21,29)(2,30,22)(3,23,31)(4,32,24)(5,35,11)(6,12,36)(7,33,9)(8,10,34)(13,19,28)(14,25,20)(15,17,26)(16,27,18), (5,11,35)(6,36,12)(7,9,33)(8,34,10)(13,19,28)(14,25,20)(15,17,26)(16,27,18), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,4)(2,3)(5,13)(6,16)(7,15)(8,14)(9,26)(10,25)(11,28)(12,27)(17,33)(18,36)(19,35)(20,34)(21,32)(22,31)(23,30)(24,29) );
G=PermutationGroup([[(1,16,7),(2,13,8),(3,14,5),(4,15,6),(9,29,18),(10,30,19),(11,31,20),(12,32,17),(21,27,33),(22,28,34),(23,25,35),(24,26,36)], [(1,21,29),(2,30,22),(3,23,31),(4,32,24),(5,35,11),(6,12,36),(7,33,9),(8,10,34),(13,19,28),(14,25,20),(15,17,26),(16,27,18)], [(5,11,35),(6,36,12),(7,9,33),(8,34,10),(13,19,28),(14,25,20),(15,17,26),(16,27,18)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36)], [(1,4),(2,3),(5,13),(6,16),(7,15),(8,14),(9,26),(10,25),(11,28),(12,27),(17,33),(18,36),(19,35),(20,34),(21,32),(22,31),(23,30),(24,29)]])
He3⋊3D4 is a maximal subgroup of
C12.84S32 C12.91S32 C12.S32 C3⋊S3⋊D12 C62.8D6 C62⋊D6 C62⋊2D6
He3⋊3D4 is a maximal quotient of He3⋊3D8 He3⋊4SD16 He3⋊5SD16 He3⋊3Q16 C62.D6 C62.4D6 C62.5D6
Matrix representation of He3⋊3D4 ►in GL6(𝔽13)
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
12 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
4 | 11 | 0 | 0 | 0 | 0 |
2 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 11 | 0 | 0 |
0 | 0 | 2 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 11 |
0 | 0 | 0 | 0 | 2 | 9 |
2 | 9 | 0 | 0 | 0 | 0 |
4 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 9 |
0 | 0 | 0 | 0 | 4 | 11 |
0 | 0 | 2 | 9 | 0 | 0 |
0 | 0 | 4 | 11 | 0 | 0 |
G:=sub<GL(6,GF(13))| [0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[4,2,0,0,0,0,11,9,0,0,0,0,0,0,4,2,0,0,0,0,11,9,0,0,0,0,0,0,4,2,0,0,0,0,11,9],[2,4,0,0,0,0,9,11,0,0,0,0,0,0,0,0,2,4,0,0,0,0,9,11,0,0,2,4,0,0,0,0,9,11,0,0] >;
He3⋊3D4 in GAP, Magma, Sage, TeX
{\rm He}_3\rtimes_3D_4
% in TeX
G:=Group("He3:3D4");
// GroupNames label
G:=SmallGroup(216,37);
// by ID
G=gap.SmallGroup(216,37);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-3,-3,73,31,201,1444,382,5189,2603]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^4=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e=a^-1,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations
Export