Copied to
clipboard

G = A4×C2×C10order 240 = 24·3·5

Direct product of C2×C10 and A4

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×C2×C10, C23⋊C30, C243C15, C22⋊(C2×C30), (C23×C10)⋊1C3, (C22×C10)⋊2C6, (C2×C10)⋊3(C2×C6), SmallGroup(240,203)

Series: Derived Chief Lower central Upper central

C1C22 — A4×C2×C10
C1C22C2×C10C5×A4C10×A4 — A4×C2×C10
C22 — A4×C2×C10
C1C2×C10

Generators and relations for A4×C2×C10
 G = < a,b,c,d,e | a2=b10=c2=d2=e3=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, ede-1=c >

Subgroups: 184 in 78 conjugacy classes, 30 normal (12 characteristic)
C1, C2, C2, C3, C22, C22, C5, C6, C23, C23, C10, C10, A4, C2×C6, C15, C24, C2×C10, C2×C10, C2×A4, C30, C22×C10, C22×C10, C22×A4, C5×A4, C2×C30, C23×C10, C10×A4, A4×C2×C10
Quotients: C1, C2, C3, C22, C5, C6, C10, A4, C2×C6, C15, C2×C10, C2×A4, C30, C22×A4, C5×A4, C2×C30, C10×A4, A4×C2×C10

Smallest permutation representation of A4×C2×C10
On 60 points
Generators in S60
(1 24)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 21)(9 22)(10 23)(11 52)(12 53)(13 54)(14 55)(15 56)(16 57)(17 58)(18 59)(19 60)(20 51)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 41)(38 42)(39 43)(40 44)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)
(1 29)(2 30)(3 21)(4 22)(5 23)(6 24)(7 25)(8 26)(9 27)(10 28)(11 16)(12 17)(13 18)(14 19)(15 20)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 41)(38 42)(39 43)(40 44)(51 56)(52 57)(53 58)(54 59)(55 60)
(1 24)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 21)(9 22)(10 23)(11 57)(12 58)(13 59)(14 60)(15 51)(16 52)(17 53)(18 54)(19 55)(20 56)(31 36)(32 37)(33 38)(34 39)(35 40)(41 46)(42 47)(43 48)(44 49)(45 50)
(1 60 40)(2 51 31)(3 52 32)(4 53 33)(5 54 34)(6 55 35)(7 56 36)(8 57 37)(9 58 38)(10 59 39)(11 46 26)(12 47 27)(13 48 28)(14 49 29)(15 50 30)(16 41 21)(17 42 22)(18 43 23)(19 44 24)(20 45 25)

G:=sub<Sym(60)| (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,21)(9,22)(10,23)(11,52)(12,53)(13,54)(14,55)(15,56)(16,57)(17,58)(18,59)(19,60)(20,51)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,41)(38,42)(39,43)(40,44), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (1,29)(2,30)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,16)(12,17)(13,18)(14,19)(15,20)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,41)(38,42)(39,43)(40,44)(51,56)(52,57)(53,58)(54,59)(55,60), (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,21)(9,22)(10,23)(11,57)(12,58)(13,59)(14,60)(15,51)(16,52)(17,53)(18,54)(19,55)(20,56)(31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50), (1,60,40)(2,51,31)(3,52,32)(4,53,33)(5,54,34)(6,55,35)(7,56,36)(8,57,37)(9,58,38)(10,59,39)(11,46,26)(12,47,27)(13,48,28)(14,49,29)(15,50,30)(16,41,21)(17,42,22)(18,43,23)(19,44,24)(20,45,25)>;

G:=Group( (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,21)(9,22)(10,23)(11,52)(12,53)(13,54)(14,55)(15,56)(16,57)(17,58)(18,59)(19,60)(20,51)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,41)(38,42)(39,43)(40,44), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (1,29)(2,30)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,16)(12,17)(13,18)(14,19)(15,20)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,41)(38,42)(39,43)(40,44)(51,56)(52,57)(53,58)(54,59)(55,60), (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,21)(9,22)(10,23)(11,57)(12,58)(13,59)(14,60)(15,51)(16,52)(17,53)(18,54)(19,55)(20,56)(31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50), (1,60,40)(2,51,31)(3,52,32)(4,53,33)(5,54,34)(6,55,35)(7,56,36)(8,57,37)(9,58,38)(10,59,39)(11,46,26)(12,47,27)(13,48,28)(14,49,29)(15,50,30)(16,41,21)(17,42,22)(18,43,23)(19,44,24)(20,45,25) );

G=PermutationGroup([[(1,24),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,21),(9,22),(10,23),(11,52),(12,53),(13,54),(14,55),(15,56),(16,57),(17,58),(18,59),(19,60),(20,51),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,41),(38,42),(39,43),(40,44)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60)], [(1,29),(2,30),(3,21),(4,22),(5,23),(6,24),(7,25),(8,26),(9,27),(10,28),(11,16),(12,17),(13,18),(14,19),(15,20),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,41),(38,42),(39,43),(40,44),(51,56),(52,57),(53,58),(54,59),(55,60)], [(1,24),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,21),(9,22),(10,23),(11,57),(12,58),(13,59),(14,60),(15,51),(16,52),(17,53),(18,54),(19,55),(20,56),(31,36),(32,37),(33,38),(34,39),(35,40),(41,46),(42,47),(43,48),(44,49),(45,50)], [(1,60,40),(2,51,31),(3,52,32),(4,53,33),(5,54,34),(6,55,35),(7,56,36),(8,57,37),(9,58,38),(10,59,39),(11,46,26),(12,47,27),(13,48,28),(14,49,29),(15,50,30),(16,41,21),(17,42,22),(18,43,23),(19,44,24),(20,45,25)]])

A4×C2×C10 is a maximal subgroup of   C242D15

80 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B5A5B5C5D6A···6F10A···10L10M···10AB15A···15H30A···30X
order122222223355556···610···1010···1015···1530···30
size111133334411114···41···13···34···44···4

80 irreducible representations

dim111111113333
type++++
imageC1C2C3C5C6C10C15C30A4C2×A4C5×A4C10×A4
kernelA4×C2×C10C10×A4C23×C10C22×A4C22×C10C2×A4C24C23C2×C10C10C22C2
# reps132461282413412

Matrix representation of A4×C2×C10 in GL4(𝔽31) generated by

30000
03000
00300
00030
,
1000
02900
00290
00029
,
1000
0100
00300
00030
,
1000
03000
00300
0001
,
5000
0010
0001
0100
G:=sub<GL(4,GF(31))| [30,0,0,0,0,30,0,0,0,0,30,0,0,0,0,30],[1,0,0,0,0,29,0,0,0,0,29,0,0,0,0,29],[1,0,0,0,0,1,0,0,0,0,30,0,0,0,0,30],[1,0,0,0,0,30,0,0,0,0,30,0,0,0,0,1],[5,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0] >;

A4×C2×C10 in GAP, Magma, Sage, TeX

A_4\times C_2\times C_{10}
% in TeX

G:=Group("A4xC2xC10");
// GroupNames label

G:=SmallGroup(240,203);
// by ID

G=gap.SmallGroup(240,203);
# by ID

G:=PCGroup([6,-2,-2,-3,-5,-2,2,916,1637]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^10=c^2=d^2=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations

׿
×
𝔽