Extensions 1→N→G→Q→1 with N=C2xC12 and Q=C10

Direct product G=NxQ with N=C2xC12 and Q=C10
dρLabelID
C22xC60240C2^2xC60240,185

Semidirect products G=N:Q with N=C2xC12 and Q=C10
extensionφ:Q→Aut NdρLabelID
(C2xC12):1C10 = C5xD6:C4φ: C10/C5C2 ⊆ Aut C2xC12120(C2xC12):1C10240,59
(C2xC12):2C10 = C15xC22:C4φ: C10/C5C2 ⊆ Aut C2xC12120(C2xC12):2C10240,82
(C2xC12):3C10 = C10xD12φ: C10/C5C2 ⊆ Aut C2xC12120(C2xC12):3C10240,167
(C2xC12):4C10 = C5xC4oD12φ: C10/C5C2 ⊆ Aut C2xC121202(C2xC12):4C10240,168
(C2xC12):5C10 = S3xC2xC20φ: C10/C5C2 ⊆ Aut C2xC12120(C2xC12):5C10240,166
(C2xC12):6C10 = D4xC30φ: C10/C5C2 ⊆ Aut C2xC12120(C2xC12):6C10240,186
(C2xC12):7C10 = C15xC4oD4φ: C10/C5C2 ⊆ Aut C2xC121202(C2xC12):7C10240,188

Non-split extensions G=N.Q with N=C2xC12 and Q=C10
extensionφ:Q→Aut NdρLabelID
(C2xC12).1C10 = C5xDic3:C4φ: C10/C5C2 ⊆ Aut C2xC12240(C2xC12).1C10240,57
(C2xC12).2C10 = C15xC4:C4φ: C10/C5C2 ⊆ Aut C2xC12240(C2xC12).2C10240,83
(C2xC12).3C10 = C5xC4:Dic3φ: C10/C5C2 ⊆ Aut C2xC12240(C2xC12).3C10240,58
(C2xC12).4C10 = C10xDic6φ: C10/C5C2 ⊆ Aut C2xC12240(C2xC12).4C10240,165
(C2xC12).5C10 = C5xC4.Dic3φ: C10/C5C2 ⊆ Aut C2xC121202(C2xC12).5C10240,55
(C2xC12).6C10 = C10xC3:C8φ: C10/C5C2 ⊆ Aut C2xC12240(C2xC12).6C10240,54
(C2xC12).7C10 = Dic3xC20φ: C10/C5C2 ⊆ Aut C2xC12240(C2xC12).7C10240,56
(C2xC12).8C10 = C15xM4(2)φ: C10/C5C2 ⊆ Aut C2xC121202(C2xC12).8C10240,85
(C2xC12).9C10 = Q8xC30φ: C10/C5C2 ⊆ Aut C2xC12240(C2xC12).9C10240,187

׿
x
:
Z
F
o
wr
Q
<