direct product, metacyclic, nilpotent (class 2), monomial, 2-elementary
Aliases: C15×M4(2), C4.C60, C8⋊3C30, C40⋊7C6, C24⋊7C10, C120⋊15C2, C22.C60, C20.7C12, C12.4C20, C60.16C4, C60.82C22, C4.6(C2×C30), (C2×C30).5C4, C2.3(C2×C60), (C2×C20).8C6, (C2×C4).2C30, (C2×C6).1C20, (C2×C60).20C2, C30.64(C2×C4), C6.12(C2×C20), (C2×C10).3C12, C20.22(C2×C6), (C2×C12).8C10, C12.22(C2×C10), C10.19(C2×C12), SmallGroup(240,85)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C15×M4(2)
G = < a,b,c | a15=b8=c2=1, ab=ba, ac=ca, cbc=b5 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 74 53 43 28 89 114 95)(2 75 54 44 29 90 115 96)(3 61 55 45 30 76 116 97)(4 62 56 31 16 77 117 98)(5 63 57 32 17 78 118 99)(6 64 58 33 18 79 119 100)(7 65 59 34 19 80 120 101)(8 66 60 35 20 81 106 102)(9 67 46 36 21 82 107 103)(10 68 47 37 22 83 108 104)(11 69 48 38 23 84 109 105)(12 70 49 39 24 85 110 91)(13 71 50 40 25 86 111 92)(14 72 51 41 26 87 112 93)(15 73 52 42 27 88 113 94)
(31 98)(32 99)(33 100)(34 101)(35 102)(36 103)(37 104)(38 105)(39 91)(40 92)(41 93)(42 94)(43 95)(44 96)(45 97)(61 76)(62 77)(63 78)(64 79)(65 80)(66 81)(67 82)(68 83)(69 84)(70 85)(71 86)(72 87)(73 88)(74 89)(75 90)
G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,74,53,43,28,89,114,95)(2,75,54,44,29,90,115,96)(3,61,55,45,30,76,116,97)(4,62,56,31,16,77,117,98)(5,63,57,32,17,78,118,99)(6,64,58,33,18,79,119,100)(7,65,59,34,19,80,120,101)(8,66,60,35,20,81,106,102)(9,67,46,36,21,82,107,103)(10,68,47,37,22,83,108,104)(11,69,48,38,23,84,109,105)(12,70,49,39,24,85,110,91)(13,71,50,40,25,86,111,92)(14,72,51,41,26,87,112,93)(15,73,52,42,27,88,113,94), (31,98)(32,99)(33,100)(34,101)(35,102)(36,103)(37,104)(38,105)(39,91)(40,92)(41,93)(42,94)(43,95)(44,96)(45,97)(61,76)(62,77)(63,78)(64,79)(65,80)(66,81)(67,82)(68,83)(69,84)(70,85)(71,86)(72,87)(73,88)(74,89)(75,90)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,74,53,43,28,89,114,95)(2,75,54,44,29,90,115,96)(3,61,55,45,30,76,116,97)(4,62,56,31,16,77,117,98)(5,63,57,32,17,78,118,99)(6,64,58,33,18,79,119,100)(7,65,59,34,19,80,120,101)(8,66,60,35,20,81,106,102)(9,67,46,36,21,82,107,103)(10,68,47,37,22,83,108,104)(11,69,48,38,23,84,109,105)(12,70,49,39,24,85,110,91)(13,71,50,40,25,86,111,92)(14,72,51,41,26,87,112,93)(15,73,52,42,27,88,113,94), (31,98)(32,99)(33,100)(34,101)(35,102)(36,103)(37,104)(38,105)(39,91)(40,92)(41,93)(42,94)(43,95)(44,96)(45,97)(61,76)(62,77)(63,78)(64,79)(65,80)(66,81)(67,82)(68,83)(69,84)(70,85)(71,86)(72,87)(73,88)(74,89)(75,90) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,74,53,43,28,89,114,95),(2,75,54,44,29,90,115,96),(3,61,55,45,30,76,116,97),(4,62,56,31,16,77,117,98),(5,63,57,32,17,78,118,99),(6,64,58,33,18,79,119,100),(7,65,59,34,19,80,120,101),(8,66,60,35,20,81,106,102),(9,67,46,36,21,82,107,103),(10,68,47,37,22,83,108,104),(11,69,48,38,23,84,109,105),(12,70,49,39,24,85,110,91),(13,71,50,40,25,86,111,92),(14,72,51,41,26,87,112,93),(15,73,52,42,27,88,113,94)], [(31,98),(32,99),(33,100),(34,101),(35,102),(36,103),(37,104),(38,105),(39,91),(40,92),(41,93),(42,94),(43,95),(44,96),(45,97),(61,76),(62,77),(63,78),(64,79),(65,80),(66,81),(67,82),(68,83),(69,84),(70,85),(71,86),(72,87),(73,88),(74,89),(75,90)]])
C15×M4(2) is a maximal subgroup of
C60.210D4 M4(2)⋊D15 C4.D60 D60⋊10C4 D60.3C4 C8⋊D30 C8.D30
150 conjugacy classes
class | 1 | 2A | 2B | 3A | 3B | 4A | 4B | 4C | 5A | 5B | 5C | 5D | 6A | 6B | 6C | 6D | 8A | 8B | 8C | 8D | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 12A | 12B | 12C | 12D | 12E | 12F | 15A | ··· | 15H | 20A | ··· | 20H | 20I | 20J | 20K | 20L | 24A | ··· | 24H | 30A | ··· | 30H | 30I | ··· | 30P | 40A | ··· | 40P | 60A | ··· | 60P | 60Q | ··· | 60X | 120A | ··· | 120AF |
order | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 12 | 12 | 12 | 12 | 12 | 12 | 15 | ··· | 15 | 20 | ··· | 20 | 20 | 20 | 20 | 20 | 24 | ··· | 24 | 30 | ··· | 30 | 30 | ··· | 30 | 40 | ··· | 40 | 60 | ··· | 60 | 60 | ··· | 60 | 120 | ··· | 120 |
size | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | ··· | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
150 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | |||||||||||||||||||||
image | C1 | C2 | C2 | C3 | C4 | C4 | C5 | C6 | C6 | C10 | C10 | C12 | C12 | C15 | C20 | C20 | C30 | C30 | C60 | C60 | M4(2) | C3×M4(2) | C5×M4(2) | C15×M4(2) |
kernel | C15×M4(2) | C120 | C2×C60 | C5×M4(2) | C60 | C2×C30 | C3×M4(2) | C40 | C2×C20 | C24 | C2×C12 | C20 | C2×C10 | M4(2) | C12 | C2×C6 | C8 | C2×C4 | C4 | C22 | C15 | C5 | C3 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 2 | 4 | 4 | 2 | 8 | 4 | 4 | 4 | 8 | 8 | 8 | 16 | 8 | 16 | 16 | 2 | 4 | 8 | 16 |
Matrix representation of C15×M4(2) ►in GL3(𝔽241) generated by
54 | 0 | 0 |
0 | 87 | 0 |
0 | 0 | 87 |
1 | 0 | 0 |
0 | 178 | 119 |
0 | 113 | 63 |
240 | 0 | 0 |
0 | 1 | 176 |
0 | 0 | 240 |
G:=sub<GL(3,GF(241))| [54,0,0,0,87,0,0,0,87],[1,0,0,0,178,113,0,119,63],[240,0,0,0,1,0,0,176,240] >;
C15×M4(2) in GAP, Magma, Sage, TeX
C_{15}\times M_4(2)
% in TeX
G:=Group("C15xM4(2)");
// GroupNames label
G:=SmallGroup(240,85);
// by ID
G=gap.SmallGroup(240,85);
# by ID
G:=PCGroup([6,-2,-2,-3,-5,-2,-2,360,1465,88]);
// Polycyclic
G:=Group<a,b,c|a^15=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^5>;
// generators/relations
Export