Extensions 1→N→G→Q→1 with N=C5×Q8 and Q=C6

Direct product G=N×Q with N=C5×Q8 and Q=C6
dρLabelID
Q8×C30240Q8xC30240,187

Semidirect products G=N:Q with N=C5×Q8 and Q=C6
extensionφ:Q→Out NdρLabelID
(C5×Q8)⋊C6 = D5×SL2(𝔽3)φ: C6/C1C6 ⊆ Out C5×Q8404-(C5xQ8):C6240,109
(C5×Q8)⋊2C6 = C10×SL2(𝔽3)φ: C6/C2C3 ⊆ Out C5×Q880(C5xQ8):2C6240,153
(C5×Q8)⋊3C6 = C3×Q8⋊D5φ: C6/C3C2 ⊆ Out C5×Q81204(C5xQ8):3C6240,46
(C5×Q8)⋊4C6 = C3×Q8×D5φ: C6/C3C2 ⊆ Out C5×Q81204(C5xQ8):4C6240,161
(C5×Q8)⋊5C6 = C3×Q82D5φ: C6/C3C2 ⊆ Out C5×Q81204(C5xQ8):5C6240,162
(C5×Q8)⋊6C6 = C15×SD16φ: C6/C3C2 ⊆ Out C5×Q81202(C5xQ8):6C6240,87
(C5×Q8)⋊7C6 = C15×C4○D4φ: trivial image1202(C5xQ8):7C6240,188

Non-split extensions G=N.Q with N=C5×Q8 and Q=C6
extensionφ:Q→Out NdρLabelID
(C5×Q8).C6 = Dic5.A4φ: C6/C1C6 ⊆ Out C5×Q8804+(C5xQ8).C6240,108
(C5×Q8).2C6 = C5×C4.A4φ: C6/C2C3 ⊆ Out C5×Q8802(C5xQ8).2C6240,154
(C5×Q8).3C6 = C3×C5⋊Q16φ: C6/C3C2 ⊆ Out C5×Q82404(C5xQ8).3C6240,47
(C5×Q8).4C6 = C15×Q16φ: C6/C3C2 ⊆ Out C5×Q82402(C5xQ8).4C6240,88

׿
×
𝔽