Copied to
clipboard

G = D5×SL2(𝔽3)  order 240 = 24·3·5

Direct product of D5 and SL2(𝔽3)

direct product, non-abelian, soluble

Aliases: D5×SL2(𝔽3), D10.A4, (Q8×D5)⋊C3, (C5×Q8)⋊C6, Q8⋊(C3×D5), C2.3(D5×A4), C10.2(C2×A4), C5⋊(C2×SL2(𝔽3)), (C5×SL2(𝔽3))⋊3C2, SmallGroup(240,109)

Series: Derived Chief Lower central Upper central

C1C2C5×Q8 — D5×SL2(𝔽3)
C1C2C10C5×Q8C5×SL2(𝔽3) — D5×SL2(𝔽3)
C5×Q8 — D5×SL2(𝔽3)
C1C2

Generators and relations for D5×SL2(𝔽3)
 G = < a,b,c,d,e | a5=b2=c4=e3=1, d2=c2, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=c-1, ece-1=d, ede-1=cd >

5C2
5C2
4C3
3C4
5C22
15C4
4C6
20C6
20C6
4C15
15C2×C4
15Q8
20C2×C6
3Dic5
3C20
4C3×D5
4C30
4C3×D5
5C2×Q8
3C4×D5
3Dic10
4C6×D5
5C2×SL2(𝔽3)

Character table of D5×SL2(𝔽3)

 class 12A2B2C3A3B4A4B5A5B6A6B6C6D6E6F10A10B15A15B15C15D20A20B30A30B30C30D
 size 11554463022442020202022888812128888
ρ11111111111111111111111111111    trivial
ρ211-1-1111-11111-1-1-1-1111111111111    linear of order 2
ρ31111ζ32ζ31111ζ3ζ32ζ32ζ3ζ32ζ311ζ3ζ32ζ32ζ311ζ3ζ32ζ3ζ32    linear of order 3
ρ411-1-1ζ3ζ321-111ζ32ζ3ζ65ζ6ζ65ζ611ζ32ζ3ζ3ζ3211ζ32ζ3ζ32ζ3    linear of order 6
ρ511-1-1ζ32ζ31-111ζ3ζ32ζ6ζ65ζ6ζ6511ζ3ζ32ζ32ζ311ζ3ζ32ζ3ζ32    linear of order 6
ρ61111ζ3ζ321111ζ32ζ3ζ3ζ32ζ3ζ3211ζ32ζ3ζ3ζ3211ζ32ζ3ζ32ζ3    linear of order 3
ρ722002220-1-5/2-1+5/2220000-1+5/2-1-5/2-1-5/2-1+5/2-1-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2-1+5/2    orthogonal lifted from D5
ρ822002220-1+5/2-1-5/2220000-1-5/2-1+5/2-1+5/2-1-5/2-1+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2-1-5/2    orthogonal lifted from D5
ρ92-2-22-1-100221111-1-1-2-2-1-1-1-1001111    symplectic lifted from SL2(𝔽3), Schur index 2
ρ102-22-2-1-1002211-1-111-2-2-1-1-1-1001111    symplectic lifted from SL2(𝔽3), Schur index 2
ρ112-2-22ζ65ζ60022ζ32ζ3ζ3ζ32ζ65ζ6-2-2ζ6ζ65ζ65ζ600ζ32ζ3ζ32ζ3    complex lifted from SL2(𝔽3)
ρ122-2-22ζ6ζ650022ζ3ζ32ζ32ζ3ζ6ζ65-2-2ζ65ζ6ζ6ζ6500ζ3ζ32ζ3ζ32    complex lifted from SL2(𝔽3)
ρ132-22-2ζ65ζ60022ζ32ζ3ζ65ζ6ζ3ζ32-2-2ζ6ζ65ζ65ζ600ζ32ζ3ζ32ζ3    complex lifted from SL2(𝔽3)
ρ142-22-2ζ6ζ650022ζ3ζ32ζ6ζ65ζ32ζ3-2-2ζ65ζ6ζ6ζ6500ζ3ζ32ζ3ζ32    complex lifted from SL2(𝔽3)
ρ152200-1--3-1+-320-1+5/2-1-5/2-1+-3-1--30000-1-5/2-1+5/2ζ3ζ543ζ5ζ32ζ5332ζ52ζ32ζ5432ζ5ζ3ζ533ζ52-1+5/2-1-5/2ζ3ζ533ζ52ζ32ζ5432ζ5ζ3ζ543ζ5ζ32ζ5332ζ52    complex lifted from C3×D5
ρ162200-1+-3-1--320-1-5/2-1+5/2-1--3-1+-30000-1+5/2-1-5/2ζ32ζ5332ζ52ζ3ζ543ζ5ζ3ζ533ζ52ζ32ζ5432ζ5-1-5/2-1+5/2ζ32ζ5432ζ5ζ3ζ533ζ52ζ32ζ5332ζ52ζ3ζ543ζ5    complex lifted from C3×D5
ρ172200-1--3-1+-320-1-5/2-1+5/2-1+-3-1--30000-1+5/2-1-5/2ζ3ζ533ζ52ζ32ζ5432ζ5ζ32ζ5332ζ52ζ3ζ543ζ5-1-5/2-1+5/2ζ3ζ543ζ5ζ32ζ5332ζ52ζ3ζ533ζ52ζ32ζ5432ζ5    complex lifted from C3×D5
ρ182200-1+-3-1--320-1+5/2-1-5/2-1--3-1+-30000-1-5/2-1+5/2ζ32ζ5432ζ5ζ3ζ533ζ52ζ3ζ543ζ5ζ32ζ5332ζ52-1+5/2-1-5/2ζ32ζ5332ζ52ζ3ζ543ζ5ζ32ζ5432ζ5ζ3ζ533ζ52    complex lifted from C3×D5
ρ19333300-1-133000000330000-1-10000    orthogonal lifted from A4
ρ2033-3-300-1133000000330000-1-10000    orthogonal lifted from C2×A4
ρ214-400-2-200-1-5-1+52200001-51+51+5/21-5/21+5/21-5/200-1+5/2-1-5/2-1-5/2-1+5/2    symplectic faithful, Schur index 2
ρ224-400-2-200-1+5-1-52200001+51-51-5/21+5/21-5/21+5/200-1-5/2-1+5/2-1+5/2-1-5/2    symplectic faithful, Schur index 2
ρ234-4001--31+-300-1-5-1+5-1--3-1+-300001-51+532ζ5332ζ523ζ543ζ53ζ533ζ5232ζ5432ζ500ζ32ζ5432ζ5ζ3ζ533ζ52ζ32ζ5332ζ52ζ3ζ543ζ5    complex faithful
ρ244-4001--31+-300-1+5-1-5-1--3-1+-300001+51-532ζ5432ζ53ζ533ζ523ζ543ζ532ζ5332ζ5200ζ32ζ5332ζ52ζ3ζ543ζ5ζ32ζ5432ζ5ζ3ζ533ζ52    complex faithful
ρ254-4001+-31--300-1+5-1-5-1+-3-1--300001+51-53ζ543ζ532ζ5332ζ5232ζ5432ζ53ζ533ζ5200ζ3ζ533ζ52ζ32ζ5432ζ5ζ3ζ543ζ5ζ32ζ5332ζ52    complex faithful
ρ264-4001+-31--300-1-5-1+5-1+-3-1--300001-51+53ζ533ζ5232ζ5432ζ532ζ5332ζ523ζ543ζ500ζ3ζ543ζ5ζ32ζ5332ζ52ζ3ζ533ζ52ζ32ζ5432ζ5    complex faithful
ρ27660000-20-3-35/2-3+35/2000000-3+35/2-3-35/200001+5/21-5/20000    orthogonal lifted from D5×A4
ρ28660000-20-3+35/2-3-35/2000000-3-35/2-3+35/200001-5/21+5/20000    orthogonal lifted from D5×A4

Smallest permutation representation of D5×SL2(𝔽3)
On 40 points
Generators in S40
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 12)(2 11)(3 15)(4 14)(5 13)(6 38)(7 37)(8 36)(9 40)(10 39)(16 23)(17 22)(18 21)(19 25)(20 24)(26 33)(27 32)(28 31)(29 35)(30 34)
(1 23 13 17)(2 24 14 18)(3 25 15 19)(4 21 11 20)(5 22 12 16)(6 30 40 31)(7 26 36 32)(8 27 37 33)(9 28 38 34)(10 29 39 35)
(1 8 13 37)(2 9 14 38)(3 10 15 39)(4 6 11 40)(5 7 12 36)(16 26 22 32)(17 27 23 33)(18 28 24 34)(19 29 25 35)(20 30 21 31)
(6 21 31)(7 22 32)(8 23 33)(9 24 34)(10 25 35)(16 26 36)(17 27 37)(18 28 38)(19 29 39)(20 30 40)

G:=sub<Sym(40)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,12)(2,11)(3,15)(4,14)(5,13)(6,38)(7,37)(8,36)(9,40)(10,39)(16,23)(17,22)(18,21)(19,25)(20,24)(26,33)(27,32)(28,31)(29,35)(30,34), (1,23,13,17)(2,24,14,18)(3,25,15,19)(4,21,11,20)(5,22,12,16)(6,30,40,31)(7,26,36,32)(8,27,37,33)(9,28,38,34)(10,29,39,35), (1,8,13,37)(2,9,14,38)(3,10,15,39)(4,6,11,40)(5,7,12,36)(16,26,22,32)(17,27,23,33)(18,28,24,34)(19,29,25,35)(20,30,21,31), (6,21,31)(7,22,32)(8,23,33)(9,24,34)(10,25,35)(16,26,36)(17,27,37)(18,28,38)(19,29,39)(20,30,40)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,12)(2,11)(3,15)(4,14)(5,13)(6,38)(7,37)(8,36)(9,40)(10,39)(16,23)(17,22)(18,21)(19,25)(20,24)(26,33)(27,32)(28,31)(29,35)(30,34), (1,23,13,17)(2,24,14,18)(3,25,15,19)(4,21,11,20)(5,22,12,16)(6,30,40,31)(7,26,36,32)(8,27,37,33)(9,28,38,34)(10,29,39,35), (1,8,13,37)(2,9,14,38)(3,10,15,39)(4,6,11,40)(5,7,12,36)(16,26,22,32)(17,27,23,33)(18,28,24,34)(19,29,25,35)(20,30,21,31), (6,21,31)(7,22,32)(8,23,33)(9,24,34)(10,25,35)(16,26,36)(17,27,37)(18,28,38)(19,29,39)(20,30,40) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,12),(2,11),(3,15),(4,14),(5,13),(6,38),(7,37),(8,36),(9,40),(10,39),(16,23),(17,22),(18,21),(19,25),(20,24),(26,33),(27,32),(28,31),(29,35),(30,34)], [(1,23,13,17),(2,24,14,18),(3,25,15,19),(4,21,11,20),(5,22,12,16),(6,30,40,31),(7,26,36,32),(8,27,37,33),(9,28,38,34),(10,29,39,35)], [(1,8,13,37),(2,9,14,38),(3,10,15,39),(4,6,11,40),(5,7,12,36),(16,26,22,32),(17,27,23,33),(18,28,24,34),(19,29,25,35),(20,30,21,31)], [(6,21,31),(7,22,32),(8,23,33),(9,24,34),(10,25,35),(16,26,36),(17,27,37),(18,28,38),(19,29,39),(20,30,40)]])

D5×SL2(𝔽3) is a maximal subgroup of   D10.S4  D10.1S4  D10.2S4  SL2(𝔽3).11D10  D20.A4

Matrix representation of D5×SL2(𝔽3) in GL4(𝔽61) generated by

0100
601700
0010
0001
,
0100
1000
00600
00060
,
1000
0100
0001
00600
,
1000
0100
004713
001314
,
1000
0100
0010
004713
G:=sub<GL(4,GF(61))| [0,60,0,0,1,17,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,60,0,0,0,0,60],[1,0,0,0,0,1,0,0,0,0,0,60,0,0,1,0],[1,0,0,0,0,1,0,0,0,0,47,13,0,0,13,14],[1,0,0,0,0,1,0,0,0,0,1,47,0,0,0,13] >;

D5×SL2(𝔽3) in GAP, Magma, Sage, TeX

D_5\times {\rm SL}_2({\mathbb F}_3)
% in TeX

G:=Group("D5xSL(2,3)");
// GroupNames label

G:=SmallGroup(240,109);
// by ID

G=gap.SmallGroup(240,109);
# by ID

G:=PCGroup([6,-2,-3,-2,2,-5,-2,170,374,81,543,261,2884]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^2=c^4=e^3=1,d^2=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=c^-1,e*c*e^-1=d,e*d*e^-1=c*d>;
// generators/relations

Export

Subgroup lattice of D5×SL2(𝔽3) in TeX
Character table of D5×SL2(𝔽3) in TeX

׿
×
𝔽