Extensions 1→N→G→Q→1 with N=C3×C52C8 and Q=C2

Direct product G=N×Q with N=C3×C52C8 and Q=C2
dρLabelID
C6×C52C8240C6xC5:2C8240,38

Semidirect products G=N:Q with N=C3×C52C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C52C8)⋊1C2 = C5⋊D24φ: C2/C1C2 ⊆ Out C3×C52C81204+(C3xC5:2C8):1C2240,15
(C3×C52C8)⋊2C2 = D12.D5φ: C2/C1C2 ⊆ Out C3×C52C81204-(C3xC5:2C8):2C2240,20
(C3×C52C8)⋊3C2 = Dic6⋊D5φ: C2/C1C2 ⊆ Out C3×C52C81204+(C3xC5:2C8):3C2240,21
(C3×C52C8)⋊4C2 = S3×C52C8φ: C2/C1C2 ⊆ Out C3×C52C81204(C3xC5:2C8):4C2240,8
(C3×C52C8)⋊5C2 = D152C8φ: C2/C1C2 ⊆ Out C3×C52C81204(C3xC5:2C8):5C2240,9
(C3×C52C8)⋊6C2 = D6.Dic5φ: C2/C1C2 ⊆ Out C3×C52C81204(C3xC5:2C8):6C2240,11
(C3×C52C8)⋊7C2 = D30.5C4φ: C2/C1C2 ⊆ Out C3×C52C81204(C3xC5:2C8):7C2240,12
(C3×C52C8)⋊8C2 = C3×D4⋊D5φ: C2/C1C2 ⊆ Out C3×C52C81204(C3xC5:2C8):8C2240,44
(C3×C52C8)⋊9C2 = C3×D4.D5φ: C2/C1C2 ⊆ Out C3×C52C81204(C3xC5:2C8):9C2240,45
(C3×C52C8)⋊10C2 = C3×Q8⋊D5φ: C2/C1C2 ⊆ Out C3×C52C81204(C3xC5:2C8):10C2240,46
(C3×C52C8)⋊11C2 = C3×C8⋊D5φ: C2/C1C2 ⊆ Out C3×C52C81202(C3xC5:2C8):11C2240,34
(C3×C52C8)⋊12C2 = C3×C4.Dic5φ: C2/C1C2 ⊆ Out C3×C52C81202(C3xC5:2C8):12C2240,39
(C3×C52C8)⋊13C2 = D5×C24φ: trivial image1202(C3xC5:2C8):13C2240,33

Non-split extensions G=N.Q with N=C3×C52C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C52C8).1C2 = C5⋊Dic12φ: C2/C1C2 ⊆ Out C3×C52C82404-(C3xC5:2C8).1C2240,24
(C3×C52C8).2C2 = C3×C5⋊Q16φ: C2/C1C2 ⊆ Out C3×C52C82404(C3xC5:2C8).2C2240,47
(C3×C52C8).3C2 = C15⋊C16φ: C2/C1C2 ⊆ Out C3×C52C82404(C3xC5:2C8).3C2240,6
(C3×C52C8).4C2 = C3×C5⋊C16φ: C2/C1C2 ⊆ Out C3×C52C82404(C3xC5:2C8).4C2240,5

׿
×
𝔽